/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 222 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D) -> Com_1(f6(B, B, D, D)) :|: TRUE f6(A, B, C, D) -> Com_1(f6(A - 1, B, C - 1, D)) :|: 0 >= A + 1 f6(A, B, C, D) -> Com_1(f6(A - 1, B, C - 1, D)) :|: A >= 1 f6(A, B, C, D) -> Com_1(f14(0, B, C, D)) :|: D >= B + 1 && A >= 0 && A <= 0 f6(A, B, C, D) -> Com_1(f14(0, B, C, D)) :|: B >= 1 + D && A >= 0 && A <= 0 f6(A, B, C, D) -> Com_1(f14(0, B, C, B)) :|: A >= 0 && A <= 0 && B >= D && B <= D The start-symbols are:[f0_4] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f6 : A'=B, C'=D, [], cost: 1 1: f6 -> f6 : A'=-1+A, C'=-1+C, [ 0>=1+A ], cost: 1 2: f6 -> f6 : A'=-1+A, C'=-1+C, [ A>=1 ], cost: 1 3: f6 -> f14 : A'=0, [ D>=1+B && A==0 ], cost: 1 4: f6 -> f14 : A'=0, [ B>=1+D && A==0 ], cost: 1 5: f6 -> f14 : A'=0, D'=B, [ A==0 && B==D ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f6 : A'=B, C'=D, [], cost: 1 Removed unreachable and leaf rules: Start location: f0 0: f0 -> f6 : A'=B, C'=D, [], cost: 1 1: f6 -> f6 : A'=-1+A, C'=-1+C, [ 0>=1+A ], cost: 1 2: f6 -> f6 : A'=-1+A, C'=-1+C, [ A>=1 ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f6 -> f6 : A'=-1+A, C'=-1+C, [ 0>=1+A ], cost: 1 2: f6 -> f6 : A'=-1+A, C'=-1+C, [ A>=1 ], cost: 1 Accelerated rule 1 with NONTERM, yielding the new rule 6. Accelerated rule 2 with metering function A, yielding the new rule 7. Removing the simple loops: 1 2. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f6 : A'=B, C'=D, [], cost: 1 6: f6 -> [3] : [ 0>=1+A ], cost: NONTERM 7: f6 -> f6 : A'=0, C'=C-A, [ A>=1 ], cost: A Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f6 : A'=B, C'=D, [], cost: 1 8: f0 -> [3] : A'=B, C'=D, [ 0>=1+B ], cost: NONTERM 9: f0 -> f6 : A'=0, C'=D-B, [ B>=1 ], cost: 1+B Removed unreachable locations (and leaf rules with constant cost): Start location: f0 8: f0 -> [3] : A'=B, C'=D, [ 0>=1+B ], cost: NONTERM 9: f0 -> f6 : A'=0, C'=D-B, [ B>=1 ], cost: 1+B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 8: f0 -> [3] : A'=B, C'=D, [ 0>=1+B ], cost: NONTERM 9: f0 -> f6 : A'=0, C'=D-B, [ B>=1 ], cost: 1+B Computing asymptotic complexity for rule 8 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [ 0>=1+B ] NO ---------------------------------------- (2) BOUNDS(INF, INF)