/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 420 ms] (2) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C) -> Com_1(f2(A, B, C)) :|: A >= 0 && B >= C f2(A, B, C) -> Com_1(f2(A - 1, B, C - 1)) :|: A >= 1 && B + 1 >= C f2(A, B, C) -> Com_1(f2(A, B + C - 1, C - 1)) :|: A >= 0 && B >= 0 The start-symbols are:[f0_3] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f2 : [ A>=0 && B>=C ], cost: 1 1: f2 -> f2 : A'=-1+A, C'=-1+C, [ A>=1 && 1+B>=C ], cost: 1 2: f2 -> f2 : B'=-1+C+B, C'=-1+C, [ A>=0 && B>=0 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f2 : [ A>=0 && B>=C ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f2 -> f2 : A'=-1+A, C'=-1+C, [ A>=1 && 1+B>=C ], cost: 1 2: f2 -> f2 : B'=-1+C+B, C'=-1+C, [ A>=0 && B>=0 ], cost: 1 Accelerated rule 1 with metering function A, yielding the new rule 3. Found no metering function for rule 2. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f2 : [ A>=0 && B>=C ], cost: 1 2: f2 -> f2 : B'=-1+C+B, C'=-1+C, [ A>=0 && B>=0 ], cost: 1 3: f2 -> f2 : A'=0, C'=C-A, [ A>=1 && 1+B>=C ], cost: A Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f2 : [ A>=0 && B>=C ], cost: 1 4: f0 -> f2 : B'=-1+C+B, C'=-1+C, [ A>=0 && B>=C && B>=0 ], cost: 2 5: f0 -> f2 : A'=0, C'=C-A, [ B>=C && A>=1 ], cost: 1+A Removed unreachable locations (and leaf rules with constant cost): Start location: f0 5: f0 -> f2 : A'=0, C'=C-A, [ B>=C && A>=1 ], cost: 1+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 5: f0 -> f2 : A'=0, C'=C-A, [ B>=C && A>=1 ], cost: 1+A Computing asymptotic complexity for rule 5 Solved the limit problem by the following transformations: Created initial limit problem: 1-C+B (+/+!), A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==0,A==n,B==0} resulting limit problem: [solved] Solution: C / 0 A / n B / 0 Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ B>=C && A>=1 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (2) BOUNDS(n^1, INF)