/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 347 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B) -> Com_1(f4(0, 99)) :|: TRUE f4(A, B) -> Com_1(f4(E, B)) :|: B >= A + 1 && C >= D + 1 f4(A, B) -> Com_1(f4(A, E)) :|: B >= A + 1 f4(A, B) -> Com_1(f11(A, B)) :|: A >= B The start-symbols are:[f0_2] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f4 : A'=0, B'=99, [], cost: 1 1: f4 -> f4 : A'=free_2, [ B>=1+A && free>=1+free_1 ], cost: 1 2: f4 -> f4 : B'=free_3, [ B>=1+A ], cost: 1 3: f4 -> f11 : [ A>=B ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f4 : A'=0, B'=99, [], cost: 1 Removed unreachable and leaf rules: Start location: f0 0: f0 -> f4 : A'=0, B'=99, [], cost: 1 1: f4 -> f4 : A'=free_2, [ B>=1+A && free>=1+free_1 ], cost: 1 2: f4 -> f4 : B'=free_3, [ B>=1+A ], cost: 1 Simplified all rules, resulting in: Start location: f0 0: f0 -> f4 : A'=0, B'=99, [], cost: 1 1: f4 -> f4 : A'=free_2, [ B>=1+A ], cost: 1 2: f4 -> f4 : B'=free_3, [ B>=1+A ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f4 -> f4 : A'=free_2, [ B>=1+A ], cost: 1 2: f4 -> f4 : B'=free_3, [ B>=1+A ], cost: 1 Accelerated rule 1 with NONTERM (after strengthening guard), yielding the new rule 4. Accelerated rule 2 with NONTERM (after strengthening guard), yielding the new rule 5. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: f0 0: f0 -> f4 : A'=0, B'=99, [], cost: 1 1: f4 -> f4 : A'=free_2, [ B>=1+A ], cost: 1 2: f4 -> f4 : B'=free_3, [ B>=1+A ], cost: 1 4: f4 -> [3] : [ B>=1+A && B>=1+free_2 ], cost: NONTERM 5: f4 -> [3] : [ B>=1+A && free_3>=1+A ], cost: NONTERM Chained accelerated rules (with incoming rules): Start location: f0 0: f0 -> f4 : A'=0, B'=99, [], cost: 1 6: f0 -> f4 : A'=free_2, B'=99, [], cost: 2 7: f0 -> f4 : A'=0, B'=free_3, [], cost: 2 8: f0 -> [3] : A'=0, B'=99, [], cost: NONTERM 9: f0 -> [3] : A'=0, B'=99, [], cost: NONTERM Removed unreachable locations (and leaf rules with constant cost): Start location: f0 8: f0 -> [3] : A'=0, B'=99, [], cost: NONTERM 9: f0 -> [3] : A'=0, B'=99, [], cost: NONTERM ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 9: f0 -> [3] : A'=0, B'=99, [], cost: NONTERM Computing asymptotic complexity for rule 9 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [] NO ---------------------------------------- (2) BOUNDS(INF, INF)