/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 753 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D, E, F) -> Com_1(f2(A, G, C, D, E, F)) :|: 0 >= A f0(A, B, C, D, E, F) -> Com_1(f0(A, B, -(1) + C, G, 0, H)) :|: A >= 1 && C >= 3 f0(A, B, C, D, E, F) -> Com_1(f0(-(1) + A, B, I, G, H, F)) :|: 0 >= H + 1 && A >= 1 f0(A, B, C, D, E, F) -> Com_1(f0(-(1) + A, B, I, G, H, F)) :|: H >= 1 && A >= 1 f1(A, B, C, D, E, F) -> Com_1(f0(A, B, C, D, E, F)) :|: TRUE The start-symbols are:[f1_6] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f1 0: f0 -> f2 : B'=free, [ 0>=A ], cost: 1 1: f0 -> f0 : C'=-1+C, D'=free_1, E'=0, F'=free_2, [ A>=1 && C>=3 ], cost: 1 2: f0 -> f0 : A'=-1+A, C'=free_3, D'=free_4, E'=free_5, [ 0>=1+free_5 && A>=1 ], cost: 1 3: f0 -> f0 : A'=-1+A, C'=free_6, D'=free_7, E'=free_8, [ free_8>=1 && A>=1 ], cost: 1 4: f1 -> f0 : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: f1 -> f0 : [], cost: 1 Removed unreachable and leaf rules: Start location: f1 1: f0 -> f0 : C'=-1+C, D'=free_1, E'=0, F'=free_2, [ A>=1 && C>=3 ], cost: 1 2: f0 -> f0 : A'=-1+A, C'=free_3, D'=free_4, E'=free_5, [ 0>=1+free_5 && A>=1 ], cost: 1 3: f0 -> f0 : A'=-1+A, C'=free_6, D'=free_7, E'=free_8, [ free_8>=1 && A>=1 ], cost: 1 4: f1 -> f0 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 1: f0 -> f0 : C'=-1+C, D'=free_1, E'=0, F'=free_2, [ A>=1 && C>=3 ], cost: 1 2: f0 -> f0 : A'=-1+A, C'=free_3, D'=free_4, E'=free_5, [ 0>=1+free_5 && A>=1 ], cost: 1 3: f0 -> f0 : A'=-1+A, C'=free_6, D'=free_7, E'=free_8, [ free_8>=1 && A>=1 ], cost: 1 Accelerated rule 1 with metering function -2+C, yielding the new rule 5. Accelerated rule 2 with metering function A, yielding the new rule 6. Accelerated rule 3 with metering function A, yielding the new rule 7. Nested simple loops 2 (outer loop) and 5 (inner loop) with metering function -1+A, resulting in the new rules: 8, 9. Nested simple loops 3 (outer loop) and 5 (inner loop) with metering function -1+A, resulting in the new rules: 10, 11. Removing the simple loops: 1 2 3. Accelerated all simple loops using metering functions (where possible): Start location: f1 5: f0 -> f0 : C'=2, D'=free_1, E'=0, F'=free_2, [ A>=1 && C>=3 ], cost: -2+C 6: f0 -> f0 : A'=0, C'=free_3, D'=free_4, E'=free_5, [ 0>=1+free_5 && A>=1 ], cost: A 7: f0 -> f0 : A'=0, C'=free_6, D'=free_7, E'=free_8, [ free_8>=1 && A>=1 ], cost: A 8: f0 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_3>=3 ], cost: 1-A+free_3*(-1+A) 9: f0 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_3>=3 ], cost: -1+C-A+free_3*(-1+A) 10: f0 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_6>=3 ], cost: 1-A+free_6*(-1+A) 11: f0 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_6>=3 ], cost: -1+C-A+free_6*(-1+A) 4: f1 -> f0 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f1 4: f1 -> f0 : [], cost: 1 12: f1 -> f0 : C'=2, D'=free_1, E'=0, F'=free_2, [ A>=1 && C>=3 ], cost: -1+C 13: f1 -> f0 : A'=0, C'=free_3, D'=free_4, E'=free_5, [ 0>=1+free_5 && A>=1 ], cost: 1+A 14: f1 -> f0 : A'=0, C'=free_6, D'=free_7, E'=free_8, [ free_8>=1 && A>=1 ], cost: 1+A 15: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_3>=3 ], cost: 2-A+free_3*(-1+A) 16: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_3>=3 ], cost: C-A+free_3*(-1+A) 17: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_6>=3 ], cost: 2-A+free_6*(-1+A) 18: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_6>=3 ], cost: C-A+free_6*(-1+A) Removed unreachable locations (and leaf rules with constant cost): Start location: f1 12: f1 -> f0 : C'=2, D'=free_1, E'=0, F'=free_2, [ A>=1 && C>=3 ], cost: -1+C 13: f1 -> f0 : A'=0, C'=free_3, D'=free_4, E'=free_5, [ 0>=1+free_5 && A>=1 ], cost: 1+A 14: f1 -> f0 : A'=0, C'=free_6, D'=free_7, E'=free_8, [ free_8>=1 && A>=1 ], cost: 1+A 15: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_3>=3 ], cost: 2-A+free_3*(-1+A) 16: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_3>=3 ], cost: C-A+free_3*(-1+A) 17: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_6>=3 ], cost: 2-A+free_6*(-1+A) 18: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_6>=3 ], cost: C-A+free_6*(-1+A) ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f1 12: f1 -> f0 : C'=2, D'=free_1, E'=0, F'=free_2, [ A>=1 && C>=3 ], cost: -1+C 13: f1 -> f0 : A'=0, C'=free_3, D'=free_4, E'=free_5, [ 0>=1+free_5 && A>=1 ], cost: 1+A 14: f1 -> f0 : A'=0, C'=free_6, D'=free_7, E'=free_8, [ free_8>=1 && A>=1 ], cost: 1+A 15: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_3>=3 ], cost: 2-A+free_3*(-1+A) 16: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_3>=3 ], cost: C-A+free_3*(-1+A) 17: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ -1+A>=1 && free_6>=3 ], cost: 2-A+free_6*(-1+A) 18: f1 -> f0 : A'=1, C'=2, D'=free_1, E'=0, F'=free_2, [ C>=3 && -1+A>=1 && free_6>=3 ], cost: C-A+free_6*(-1+A) Computing asymptotic complexity for rule 12 Solved the limit problem by the following transformations: Created initial limit problem: -2+C (+/+!), A (+/+!), -1+C (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {C==n,A==1} resulting limit problem: [solved] Solution: C / n A / 1 Resulting cost -1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Computing asymptotic complexity for rule 15 Solved the limit problem by the following transformations: Created initial limit problem: -1+A (+/+!), -2+free_3 (+/+!), 2-free_3+free_3*A-A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {free_3==n,A==2} resulting limit problem: [solved] Solution: free_3 / n A / 2 Resulting cost n has complexity: Unbounded Found new complexity Unbounded. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Unbounded Cpx degree: Unbounded Solved cost: n Rule cost: 2-A+free_3*(-1+A) Rule guard: [ -1+A>=1 && free_3>=3 ] WORST_CASE(INF,?) ---------------------------------------- (2) BOUNDS(INF, INF)