/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 92 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 637 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C, D) -> Com_1(f300(A, B, C, D)) :|: TRUE f300(A, B, C, D) -> Com_1(f300(1 + A, B, E, D)) :|: E >= 1 && B >= 1 + A f300(A, B, C, D) -> Com_1(f300(1 + A, B, E, D)) :|: 0 >= E + 1 && B >= 1 + A f300(A, B, C, D) -> Com_1(f300(A, -(1) + B, 0, D)) :|: B >= 1 + A f300(A, B, C, D) -> Com_1(f1(A, B, C, E)) :|: A >= B The start-symbols are:[f2_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 3*Ar_0 + 3*Ar_1 + 2) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_2, Ar_3)) [ Fresh_2 >= 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_1, Ar_3)) [ 0 >= Fresh_1 + 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0 - 1, Ar_1, 0, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Fresh_0)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f2(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_2, Ar_3)) [ Fresh_2 >= 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_1, Ar_3)) [ 0 >= Fresh_1 + 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0 - 1, Ar_1, 0, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Fresh_0)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f2(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = 1 Pol(f300) = 1 Pol(f1) = 0 Pol(koat_start) = 1 orients all transitions weakly and the transition f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Fresh_0)) [ Ar_1 >= Ar_0 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_2, Ar_3)) [ Fresh_2 >= 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_1, Ar_3)) [ 0 >= Fresh_1 + 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0 - 1, Ar_1, 0, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Fresh_0)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f2(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = V_1 - V_2 Pol(f300) = V_1 - V_2 Pol(f1) = V_1 - V_2 Pol(koat_start) = V_1 - V_2 orients all transitions weakly and the transitions f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_2, Ar_3)) [ Fresh_2 >= 1 /\ Ar_0 >= Ar_1 + 1 ] f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_1, Ar_3)) [ 0 >= Fresh_1 + 1 /\ Ar_0 >= Ar_1 + 1 ] f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0 - 1, Ar_1, 0, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: Ar_0 + Ar_1, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_2, Ar_3)) [ Fresh_2 >= 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: Ar_0 + Ar_1, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0, Ar_1 + 1, Fresh_1, Ar_3)) [ 0 >= Fresh_1 + 1 /\ Ar_0 >= Ar_1 + 1 ] (Comp: Ar_0 + Ar_1, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f300(Ar_0 - 1, Ar_1, 0, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f300(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Fresh_0)) [ Ar_1 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(f2(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 3*Ar_0 + 3*Ar_1 + 2 Time: 0.112 sec (SMT: 0.096 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f2 0: f2 -> f300 : [], cost: 1 1: f300 -> f300 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f300 -> f300 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f300 -> f300 : A'=-1+A, C'=0, [ A>=1+B ], cost: 1 4: f300 -> f1 : D'=free_2, [ B>=A ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f2 -> f300 : [], cost: 1 Removed unreachable and leaf rules: Start location: f2 0: f2 -> f300 : [], cost: 1 1: f300 -> f300 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f300 -> f300 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f300 -> f300 : A'=-1+A, C'=0, [ A>=1+B ], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f300 -> f300 : B'=1+B, C'=free, [ free>=1 && A>=1+B ], cost: 1 2: f300 -> f300 : B'=1+B, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1 3: f300 -> f300 : A'=-1+A, C'=0, [ A>=1+B ], cost: 1 Accelerated rule 1 with metering function A-B, yielding the new rule 5. Accelerated rule 2 with metering function A-B, yielding the new rule 6. Accelerated rule 3 with metering function A-B, yielding the new rule 7. Removing the simple loops: 1 2 3. Accelerated all simple loops using metering functions (where possible): Start location: f2 0: f2 -> f300 : [], cost: 1 5: f300 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: A-B 6: f300 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: A-B 7: f300 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: A-B Chained accelerated rules (with incoming rules): Start location: f2 0: f2 -> f300 : [], cost: 1 8: f2 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 9: f2 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 10: f2 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: 1+A-B Removed unreachable locations (and leaf rules with constant cost): Start location: f2 8: f2 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 9: f2 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 10: f2 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: 1+A-B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f2 8: f2 -> f300 : B'=A, C'=free, [ free>=1 && A>=1+B ], cost: 1+A-B 9: f2 -> f300 : B'=A, C'=free_1, [ 0>=1+free_1 && A>=1+B ], cost: 1+A-B 10: f2 -> f300 : A'=B, C'=0, [ A>=1+B ], cost: 1+A-B Computing asymptotic complexity for rule 8 Solved the limit problem by the following transformations: Created initial limit problem: free (+/+!), A-B (+/+!), 1+A-B (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {free==1,A==0,B==-n} resulting limit problem: [solved] Solution: free / 1 A / 0 B / -n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A-B Rule guard: [ free>=1 && A>=1+B ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)