/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, max(2 + 27 * Arg_0, 29 + -27 * Arg_2, 29, 29 + 27 * Arg_1)). (0) CpxIntTrs (1) Koat2 Proof [FINISHED, 159 ms] (2) BOUNDS(1, max(2 + 27 * Arg_0, 29 + -27 * Arg_2, 29, 29 + 27 * Arg_1)) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C) -> Com_1(f1(A, B, C)) :|: TRUE f1(A, B, C) -> Com_1(f1(A + B, B - C, C + 1)) :|: A >= 1 The start-symbols are:[f0_3] ---------------------------------------- (1) Koat2 Proof (FINISHED) YES( ?, 2+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]) {O(n)}) Initial Complexity Problem: Start: f0 Program_Vars: Arg_0, Arg_1, Arg_2 Temp_Vars: Locations: f0, f1 Transitions: 0: f0->f1 1: f1->f1 Timebounds: Overall timebound: 2+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]) {O(n)} 0: f0->f1: 1 {O(1)} 1: f1->f1: 1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]) {O(n)} Costbounds: Overall costbound: 2+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]) {O(n)} 0: f0->f1: 1 {O(1)} 1: f1->f1: 1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]) {O(n)} Sizebounds: `Lower: 0: f0->f1, Arg_0: Arg_0 {O(n)} 0: f0->f1, Arg_1: Arg_1 {O(n)} 0: f0->f1, Arg_2: Arg_2 {O(n)} 1: f1->f1, Arg_0: min([-(-1+inf*(1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]))+max([-(Arg_2), max([-(Arg_1), -(Arg_2)])])), -(-1-Arg_1)]) {Infinity} 1: f1->f1, Arg_1: min([Arg_2, min([Arg_1, Arg_2])])+-(inf)*(1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])])) {Infinity} 1: f1->f1, Arg_2: Arg_2 {O(n)} `Upper: 0: f0->f1, Arg_0: Arg_0 {O(n)} 0: f0->f1, Arg_1: Arg_1 {O(n)} 0: f0->f1, Arg_2: Arg_2 {O(n)} 1: f1->f1, Arg_0: (1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]))*max([0, max([Arg_1, (1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]))*max([0, -(Arg_2)])+max([Arg_1, max([Arg_2, 1+Arg_2+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])])])])])])+max([Arg_0, max([Arg_1, (1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]))*max([0, -(Arg_2)])+max([Arg_1, max([Arg_2, 1+Arg_2+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])])])])])]) {O(n^3)} 1: f1->f1, Arg_1: (1+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]))*max([0, -(Arg_2)])+max([Arg_1, max([Arg_2, 1+Arg_2+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])])])]) {O(n^2)} 1: f1->f1, Arg_2: 1+Arg_2+27*max([1, max([Arg_0, max([1-Arg_2, 1+Arg_1])])]) {O(n)} ---------------------------------------- (2) BOUNDS(1, max(2 + 27 * Arg_0, 29 + -27 * Arg_2, 29, 29 + 27 * Arg_1))