/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 19 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 327 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f2(A, B, C) -> Com_1(f2(1 + A, 1 + B, C)) :|: 1 >= A f2(A, B, C) -> Com_1(f2(1 + A, 1 + B, C)) :|: 2 >= B && A >= 2 f2(A, B, C) -> Com_1(f300(A, B, D)) :|: B >= 3 && A >= 2 f1(A, B, C) -> Com_1(f2(A, B, C)) :|: TRUE The start-symbols are:[f1_3] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0 + Ar_1 + 8) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = 1 Pol(f300) = 0 Pol(f1) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] strictly and produces the following problem: 3: T: (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = -V_1 + 3 Pol(f300) = -V_1 Pol(f1) = -V_1 + 3 Pol(koat_start) = -V_1 + 3 orients all transitions weakly and the transition f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] strictly and produces the following problem: 4: T: (Comp: Ar_0 + 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = -V_2 + 3 Pol(f300) = -V_2 Pol(f1) = -V_2 + 3 Pol(koat_start) = -V_2 + 3 orients all transitions weakly and the transition f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] strictly and produces the following problem: 5: T: (Comp: Ar_0 + 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: Ar_1 + 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0 + Ar_1 + 8 Time: 0.075 sec (SMT: 0.063 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f1 0: f2 -> f2 : A'=1+A, B'=1+B, [ 1>=A ], cost: 1 1: f2 -> f2 : A'=1+A, B'=1+B, [ 2>=B && A>=2 ], cost: 1 2: f2 -> f300 : C'=free, [ B>=3 && A>=2 ], cost: 1 3: f1 -> f2 : [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: f1 -> f2 : [], cost: 1 Removed unreachable and leaf rules: Start location: f1 0: f2 -> f2 : A'=1+A, B'=1+B, [ 1>=A ], cost: 1 1: f2 -> f2 : A'=1+A, B'=1+B, [ 2>=B && A>=2 ], cost: 1 3: f1 -> f2 : [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 0. Accelerating the following rules: 0: f2 -> f2 : A'=1+A, B'=1+B, [ 1>=A ], cost: 1 1: f2 -> f2 : A'=1+A, B'=1+B, [ 2>=B && A>=2 ], cost: 1 Accelerated rule 0 with metering function 2-A, yielding the new rule 4. Accelerated rule 1 with metering function 3-B, yielding the new rule 5. Removing the simple loops: 0 1. Accelerated all simple loops using metering functions (where possible): Start location: f1 4: f2 -> f2 : A'=2, B'=2-A+B, [ 1>=A ], cost: 2-A 5: f2 -> f2 : A'=3+A-B, B'=3, [ 2>=B && A>=2 ], cost: 3-B 3: f1 -> f2 : [], cost: 1 Chained accelerated rules (with incoming rules): Start location: f1 3: f1 -> f2 : [], cost: 1 6: f1 -> f2 : A'=2, B'=2-A+B, [ 1>=A ], cost: 3-A 7: f1 -> f2 : A'=3+A-B, B'=3, [ 2>=B && A>=2 ], cost: 4-B Removed unreachable locations (and leaf rules with constant cost): Start location: f1 6: f1 -> f2 : A'=2, B'=2-A+B, [ 1>=A ], cost: 3-A 7: f1 -> f2 : A'=3+A-B, B'=3, [ 2>=B && A>=2 ], cost: 4-B ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f1 6: f1 -> f2 : A'=2, B'=2-A+B, [ 1>=A ], cost: 3-A 7: f1 -> f2 : A'=3+A-B, B'=3, [ 2>=B && A>=2 ], cost: 4-B Computing asymptotic complexity for rule 6 Solved the limit problem by the following transformations: Created initial limit problem: 2-A (+/+!), 3-A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==-n} resulting limit problem: [solved] Solution: A / -n Resulting cost 3+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 3+n Rule cost: 3-A Rule guard: [ 1>=A ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)