/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(NON_POLY, ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(INF, INF). (0) CpxIntTrs (1) Loat Proof [FINISHED, 326 ms] (2) BOUNDS(INF, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f0(A, B, C, D, E, F, G, H, I, J, K) -> Com_1(f5(A, B, C, D, E, F, G, H, I, J, K)) :|: TRUE f0(A, B, C, D, E, F, G, H, I, J, K) -> Com_1(f12(M, B, C, D, E, F, G, H, I, J, K)) :|: 15 >= L f12(A, B, C, D, E, F, G, H, I, J, K) -> Com_1(f20(A, M, M, D, E, F, G, H, I, J, K)) :|: 0 >= A + 1 f12(A, B, C, D, E, F, G, H, I, J, K) -> Com_1(f20(A, M, M, D, E, F, G, H, I, J, K)) :|: A >= 1 f0(A, B, C, D, E, F, G, H, I, J, K) -> Com_1(f5(A, B, C, 1, 1, F, G, H, I, J, K)) :|: 15 >= M f20(A, B, C, D, E, F, G, H, I, J, K) -> Com_1(f12(A - 1, B, C, D, E, 0, 0, H, I, J, K)) :|: TRUE f12(A, B, C, D, E, F, G, H, I, J, K) -> Com_1(f5(0, B, C, 0, 0, F, G, M, M, 0, 0)) :|: A >= 0 && A <= 0 The start-symbols are:[f0_11] ---------------------------------------- (1) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: f0 0: f0 -> f5 : [], cost: 1 1: f0 -> f12 : A'=free, [ 15>=free_1 ], cost: 1 4: f0 -> f5 : D'=1, E'=1, [ 15>=free_4 ], cost: 1 2: f12 -> f20 : B'=free_2, C'=free_2, [ 0>=1+A ], cost: 1 3: f12 -> f20 : B'=free_3, C'=free_3, [ A>=1 ], cost: 1 6: f12 -> f5 : A'=0, D'=0, E'=0, H'=free_5, Q'=free_5, J'=0, K'=0, [ A==0 ], cost: 1 5: f20 -> f12 : A'=-1+A, F'=0, G'=0, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 0: f0 -> f5 : [], cost: 1 Removed unreachable and leaf rules: Start location: f0 1: f0 -> f12 : A'=free, [ 15>=free_1 ], cost: 1 2: f12 -> f20 : B'=free_2, C'=free_2, [ 0>=1+A ], cost: 1 3: f12 -> f20 : B'=free_3, C'=free_3, [ A>=1 ], cost: 1 5: f20 -> f12 : A'=-1+A, F'=0, G'=0, [], cost: 1 Simplified all rules, resulting in: Start location: f0 1: f0 -> f12 : A'=free, [], cost: 1 2: f12 -> f20 : B'=free_2, C'=free_2, [ 0>=1+A ], cost: 1 3: f12 -> f20 : B'=free_3, C'=free_3, [ A>=1 ], cost: 1 5: f20 -> f12 : A'=-1+A, F'=0, G'=0, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on tree-shaped paths): Start location: f0 1: f0 -> f12 : A'=free, [], cost: 1 7: f12 -> f12 : A'=-1+A, B'=free_2, C'=free_2, F'=0, G'=0, [ 0>=1+A ], cost: 2 8: f12 -> f12 : A'=-1+A, B'=free_3, C'=free_3, F'=0, G'=0, [ A>=1 ], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 7: f12 -> f12 : A'=-1+A, B'=free_2, C'=free_2, F'=0, G'=0, [ 0>=1+A ], cost: 2 8: f12 -> f12 : A'=-1+A, B'=free_3, C'=free_3, F'=0, G'=0, [ A>=1 ], cost: 2 Accelerated rule 7 with NONTERM, yielding the new rule 9. Accelerated rule 8 with metering function A, yielding the new rule 10. Removing the simple loops: 7 8. Accelerated all simple loops using metering functions (where possible): Start location: f0 1: f0 -> f12 : A'=free, [], cost: 1 9: f12 -> [4] : [ 0>=1+A ], cost: NONTERM 10: f12 -> f12 : A'=0, B'=free_3, C'=free_3, F'=0, G'=0, [ A>=1 ], cost: 2*A Chained accelerated rules (with incoming rules): Start location: f0 1: f0 -> f12 : A'=free, [], cost: 1 11: f0 -> [4] : A'=free, [ 0>=1+free ], cost: NONTERM 12: f0 -> f12 : A'=0, B'=free_3, C'=free_3, F'=0, G'=0, [ free>=1 ], cost: 1+2*free Removed unreachable locations (and leaf rules with constant cost): Start location: f0 11: f0 -> [4] : A'=free, [ 0>=1+free ], cost: NONTERM 12: f0 -> f12 : A'=0, B'=free_3, C'=free_3, F'=0, G'=0, [ free>=1 ], cost: 1+2*free ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: f0 11: f0 -> [4] : A'=free, [ 0>=1+free ], cost: NONTERM 12: f0 -> f12 : A'=0, B'=free_3, C'=free_3, F'=0, G'=0, [ free>=1 ], cost: 1+2*free Computing asymptotic complexity for rule 11 Guard is satisfiable, yielding nontermination Resulting cost NONTERM has complexity: Nonterm Found new complexity Nonterm. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Nonterm Cpx degree: Nonterm Solved cost: NONTERM Rule cost: NONTERM Rule guard: [ 0>=1+free ] NO ---------------------------------------- (2) BOUNDS(INF, INF)