/export/starexec/sandbox/solver/bin/starexec_run_complexity /export/starexec/sandbox/benchmark/theBenchmark.koat /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 37 ms] (2) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: f4(A, B, C, D, E, F, G) -> Com_1(f4(A + B, B, C, D, E, F, G)) :|: A >= 0 f4(A, B, C, D, E, F, G) -> Com_1(f6(A, B, 0, 0, 0, 0, 0)) :|: 0 >= A + 1 f5(A, B, C, D, E, F, G) -> Com_1(f4(A, B, C, D, E, F, G)) :|: 0 >= B + 1 f5(A, B, C, D, E, F, G) -> Com_1(f6(A, B, 0, 0, 0, 0, 0)) :|: B >= 0 The start-symbols are:[f5_7] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0 + Ar_1 + 3) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 + Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 + Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 0 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = 1 Pol(f6) = 0 Pol(f5) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] strictly and produces the following problem: 3: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 + Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 0 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol f4: -X_2 - 1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ -Ar_1 - 1 >= 0 /\ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 + Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ -Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = V_1 - V_2 Pol(f5) = V_1 - V_2 Pol(f6) = V_1 - V_2 Pol(f4) = V_1 - V_2 orients all transitions weakly and the transition f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 + Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ -Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ Ar_1 >= 0 ] (Comp: 1, Cost: 1) f5(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f6(Ar_0, Ar_1, 0, 0, 0, 0, 0)) [ -Ar_1 - 1 >= 0 /\ 0 >= Ar_0 + 1 ] (Comp: Ar_0 + Ar_1, Cost: 1) f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0 + Ar_1, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ -Ar_1 - 1 >= 0 /\ Ar_0 >= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0 + Ar_1 + 3 Time: 0.120 sec (SMT: 0.100 sec) ---------------------------------------- (2) BOUNDS(1, n^1)