/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^2), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^2, n^2). (0) CpxIntTrs (1) Koat Proof [FINISHED, 204 ms] (2) BOUNDS(1, n^2) (3) Loat Proof [FINISHED, 668 ms] (4) BOUNDS(n^2, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: start(A, B, C, D, E, F) -> Com_1(lbl71(A, B, 1, D, 0, F)) :|: A >= 2 && B >= A && B <= A && C >= D && C <= D && E >= F && E <= F start(A, B, C, D, E, F) -> Com_1(stop(A, B, 0, D, 1, F)) :|: 1 >= A && B >= A && B <= A && C >= D && C <= D && E >= F && E <= F lbl71(A, B, C, D, E, F) -> Com_1(lbl71(A, B, 1 + C, D, E, F)) :|: A >= C + 2 && A >= C + 1 && A >= E + 2 && C >= 1 && E >= 0 && B >= A && B <= A lbl71(A, B, C, D, E, F) -> Com_1(cut(A, B, C, D, 1 + E, F)) :|: A >= E + 3 && A >= E + 2 && A >= 2 && E >= 0 && C + 1 >= A && C + 1 <= A && B >= A && B <= A lbl71(A, B, C, D, E, F) -> Com_1(stop(A, B, C, D, 1 + E, F)) :|: A >= 2 && E + 2 >= A && E + 2 <= A && C + 1 >= A && C + 1 <= A && B >= A && B <= A cut(A, B, C, D, E, F) -> Com_1(lbl71(A, B, 1, D, E, F)) :|: A >= 2 && A >= 2 + E && E >= 1 && C + 1 >= A && C + 1 <= A && B >= A && B <= A cut(A, B, C, D, E, F) -> Com_1(cut(A, B, 0, D, 1 + E, F)) :|: 1 >= A && A >= E + 3 && A >= 2 + E && E >= 1 && C + 1 >= A && C + 1 <= A && B >= A && B <= A cut(A, B, C, D, E, F) -> Com_1(stop(A, B, 0, D, 1 + E, F)) :|: 1 >= A && A >= 3 && C + 1 >= A && C + 1 <= A && E + 2 >= A && E + 2 <= A && B >= A && B <= A start0(A, B, C, D, E, F) -> Com_1(start(A, A, D, D, F, F)) :|: TRUE The start-symbols are:[start0_6] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, 7*Ar_0 + 2*Ar_0^2 + 5) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_0 >= 2 /\ Ar_4 >= 0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\ Ar_4 + 2 = Ar_0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, 0, Ar_3, Ar_4 + 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, Ar_4 + 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_0 >= 3 /\ Ar_2 + 1 = Ar_0 /\ Ar_4 + 2 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transitions from problem 1: cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, 0, Ar_3, Ar_4 + 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, Ar_4 + 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_0 >= 3 /\ Ar_2 + 1 = Ar_0 /\ Ar_4 + 2 = Ar_0 /\ Ar_1 = Ar_0 ] We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_0 >= 2 /\ Ar_4 >= 0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\ Ar_4 + 2 = Ar_0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: ?, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_0 >= 2 /\ Ar_4 >= 0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\ Ar_4 + 2 = Ar_0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(cut) = 1 Pol(lbl71) = 1 Pol(stop) = 0 Pol(start) = 1 Pol(start0) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\ Ar_4 + 2 = Ar_0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] strictly and produces the following problem: 4: T: (Comp: ?, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_0 >= 2 /\ Ar_4 >= 0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: 1, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\ Ar_4 + 2 = Ar_0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(cut) = 2*V_2 - 2*V_5 + 1 Pol(lbl71) = 2*V_2 - 2*V_5 Pol(stop) = 2*V_1 - 2*V_5 Pol(start) = 2*V_1 Pol(start0) = 2*V_1 Pol(koat_start) = 2*V_1 orients all transitions weakly and the transitions lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_0 >= 2 /\ Ar_4 >= 0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] strictly and produces the following problem: 5: T: (Comp: 2*Ar_0, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: 2*Ar_0, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_0 >= 2 /\ Ar_4 >= 0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: 1, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\ Ar_4 + 2 = Ar_0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(lbl71) = V_1 - V_3 and size complexities S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ]", 0-1) = Ar_1 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ]", 0-2) = Ar_2 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ]", 0-3) = Ar_3 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ]", 0-4) = Ar_4 S("koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ]", 0-5) = Ar_5 S("start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5))", 0-0) = Ar_0 S("start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5))", 0-1) = Ar_0 S("start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5))", 0-2) = Ar_3 S("start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5))", 0-3) = Ar_3 S("start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5))", 0-4) = Ar_5 S("start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5))", 0-5) = Ar_5 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-0) = Ar_0 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-1) = Ar_0 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-2) = 1 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-3) = Ar_3 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-4) = 0 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-5) = Ar_5 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-0) = Ar_0 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-1) = Ar_0 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-2) = 0 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-3) = Ar_3 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-4) = 1 S("start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\\ Ar_1 = Ar_0 /\\ Ar_2 = Ar_3 /\\ Ar_4 = Ar_5 ]", 0-5) = Ar_5 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\\ Ar_0 >= Ar_2 + 1 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_2 >= 1 /\\ Ar_4 >= 0 /\\ Ar_1 = Ar_0 ]", 0-0) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\\ Ar_0 >= Ar_2 + 1 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_2 >= 1 /\\ Ar_4 >= 0 /\\ Ar_1 = Ar_0 ]", 0-1) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\\ Ar_0 >= Ar_2 + 1 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_2 >= 1 /\\ Ar_4 >= 0 /\\ Ar_1 = Ar_0 ]", 0-2) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\\ Ar_0 >= Ar_2 + 1 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_2 >= 1 /\\ Ar_4 >= 0 /\\ Ar_1 = Ar_0 ]", 0-3) = Ar_3 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\\ Ar_0 >= Ar_2 + 1 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_2 >= 1 /\\ Ar_4 >= 0 /\\ Ar_1 = Ar_0 ]", 0-4) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\\ Ar_0 >= Ar_2 + 1 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_2 >= 1 /\\ Ar_4 >= 0 /\\ Ar_1 = Ar_0 ]", 0-5) = Ar_5 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\\ Ar_4 + 2 = Ar_0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-0) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\\ Ar_4 + 2 = Ar_0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-1) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\\ Ar_4 + 2 = Ar_0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-2) = Ar_0 + 1 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\\ Ar_4 + 2 = Ar_0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-3) = Ar_3 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\\ Ar_4 + 2 = Ar_0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-4) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\\ Ar_4 + 2 = Ar_0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-5) = Ar_5 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_0 >= 2 /\\ Ar_4 >= 0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-0) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_0 >= 2 /\\ Ar_4 >= 0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-1) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_0 >= 2 /\\ Ar_4 >= 0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-2) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_0 >= 2 /\\ Ar_4 >= 0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-3) = Ar_3 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_0 >= 2 /\\ Ar_4 >= 0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-4) = Ar_0 S("lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_0 >= 2 /\\ Ar_4 >= 0 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-5) = Ar_5 S("cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_4 >= 1 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-0) = Ar_0 S("cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_4 >= 1 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-1) = Ar_0 S("cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_4 >= 1 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-2) = 1 S("cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_4 >= 1 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-3) = Ar_3 S("cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_4 >= 1 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-4) = Ar_0 S("cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\\ Ar_0 >= Ar_4 + 2 /\\ Ar_4 >= 1 /\\ Ar_2 + 1 = Ar_0 /\\ Ar_1 = Ar_0 ]", 0-5) = Ar_5 orients the transitions lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] weakly and the transition lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] strictly and produces the following problem: 6: T: (Comp: 2*Ar_0, Cost: 1) cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= 2 /\ Ar_0 >= Ar_4 + 2 /\ Ar_4 >= 1 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: 2*Ar_0, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(cut(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= Ar_4 + 3 /\ Ar_0 >= Ar_4 + 2 /\ Ar_0 >= 2 /\ Ar_4 >= 0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: 1, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 2 /\ Ar_4 + 2 = Ar_0 /\ Ar_2 + 1 = Ar_0 /\ Ar_1 = Ar_0 ] (Comp: 2*Ar_0^2 + 3*Ar_0 + 1, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, Ar_2 + 1, Ar_3, Ar_4, Ar_5)) [ Ar_0 >= Ar_2 + 2 /\ Ar_0 >= Ar_2 + 1 /\ Ar_0 >= Ar_4 + 2 /\ Ar_2 >= 1 /\ Ar_4 >= 0 /\ Ar_1 = Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, 0, Ar_3, 1, Ar_5)) [ 1 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1, 1, Ar_3, 0, Ar_5)) [ Ar_0 >= 2 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 7*Ar_0 + 2*Ar_0^2 + 5 Time: 0.176 sec (SMT: 0.141 sec) ---------------------------------------- (2) BOUNDS(1, n^2) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start0 0: start -> lbl71 : C'=1, E'=0, [ A>=2 && B==A && C==D && E==F ], cost: 1 1: start -> stop : C'=0, E'=1, [ 1>=A && B==A && C==D && E==F ], cost: 1 2: lbl71 -> lbl71 : C'=1+C, [ A>=2+C && A>=1+C && A>=2+E && C>=1 && E>=0 && B==A ], cost: 1 3: lbl71 -> cut : E'=1+E, [ A>=3+E && A>=2+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 1 4: lbl71 -> stop : E'=1+E, [ A>=2 && 2+E==A && 1+C==A && B==A ], cost: 1 5: cut -> lbl71 : C'=1, [ A>=2 && A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 6: cut -> cut : C'=0, E'=1+E, [ 1>=A && A>=3+E && A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 7: cut -> stop : C'=0, E'=1+E, [ 1>=A && A>=3 && 1+C==A && 2+E==A && B==A ], cost: 1 8: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 8: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Removed unreachable and leaf rules: Start location: start0 0: start -> lbl71 : C'=1, E'=0, [ A>=2 && B==A && C==D && E==F ], cost: 1 2: lbl71 -> lbl71 : C'=1+C, [ A>=2+C && A>=1+C && A>=2+E && C>=1 && E>=0 && B==A ], cost: 1 3: lbl71 -> cut : E'=1+E, [ A>=3+E && A>=2+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 1 5: cut -> lbl71 : C'=1, [ A>=2 && A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 6: cut -> cut : C'=0, E'=1+E, [ 1>=A && A>=3+E && A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 8: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Removed rules with unsatisfiable guard: Start location: start0 0: start -> lbl71 : C'=1, E'=0, [ A>=2 && B==A && C==D && E==F ], cost: 1 2: lbl71 -> lbl71 : C'=1+C, [ A>=2+C && A>=1+C && A>=2+E && C>=1 && E>=0 && B==A ], cost: 1 3: lbl71 -> cut : E'=1+E, [ A>=3+E && A>=2+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 1 5: cut -> lbl71 : C'=1, [ A>=2 && A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 8: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Simplified all rules, resulting in: Start location: start0 0: start -> lbl71 : C'=1, E'=0, [ A>=2 && B==A && C==D && E==F ], cost: 1 2: lbl71 -> lbl71 : C'=1+C, [ A>=2+C && A>=2+E && C>=1 && E>=0 && B==A ], cost: 1 3: lbl71 -> cut : E'=1+E, [ A>=3+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 1 5: cut -> lbl71 : C'=1, [ A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 8: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 2: lbl71 -> lbl71 : C'=1+C, [ A>=2+C && A>=2+E && C>=1 && E>=0 && B==A ], cost: 1 Accelerated rule 2 with metering function -1-C+A, yielding the new rule 9. Removing the simple loops: 2. Accelerated all simple loops using metering functions (where possible): Start location: start0 0: start -> lbl71 : C'=1, E'=0, [ A>=2 && B==A && C==D && E==F ], cost: 1 3: lbl71 -> cut : E'=1+E, [ A>=3+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 1 9: lbl71 -> lbl71 : C'=-1+A, [ A>=2+C && A>=2+E && C>=1 && E>=0 && B==A ], cost: -1-C+A 5: cut -> lbl71 : C'=1, [ A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 8: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start0 0: start -> lbl71 : C'=1, E'=0, [ A>=2 && B==A && C==D && E==F ], cost: 1 10: start -> lbl71 : C'=-1+A, E'=0, [ B==A && C==D && E==F && A>=3 ], cost: -1+A 3: lbl71 -> cut : E'=1+E, [ A>=3+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 1 5: cut -> lbl71 : C'=1, [ A>=2+E && E>=1 && 1+C==A && B==A ], cost: 1 11: cut -> lbl71 : C'=-1+A, [ A>=2+E && E>=1 && 1+C==A && B==A && A>=3 ], cost: -1+A 8: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: start0 14: lbl71 -> lbl71 : C'=1, E'=1+E, [ A>=3+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 2 15: lbl71 -> lbl71 : C'=-1+A, E'=1+E, [ A>=3+E && E>=0 && 1+C==A && B==A && A>=3 ], cost: A 12: start0 -> lbl71 : B'=A, C'=1, E'=0, [ A>=2 ], cost: 2 13: start0 -> lbl71 : B'=A, C'=-1+A, E'=0, [ A>=3 ], cost: A Accelerating simple loops of location 1. Accelerating the following rules: 14: lbl71 -> lbl71 : C'=1, E'=1+E, [ A>=3+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 2 15: lbl71 -> lbl71 : C'=-1+A, E'=1+E, [ A>=3+E && E>=0 && 1+C==A && B==A && A>=3 ], cost: A Accelerated rule 14 with NONTERM (after strengthening guard), yielding the new rule 16. Accelerated rule 15 with metering function -2+A-E, yielding the new rule 17. Removing the simple loops: 15. Accelerated all simple loops using metering functions (where possible): Start location: start0 14: lbl71 -> lbl71 : C'=1, E'=1+E, [ A>=3+E && A>=2 && E>=0 && 1+C==A && B==A ], cost: 2 16: lbl71 -> [6] : [ A>=3+E && E>=0 && 1+C==A && B==A && 2==A ], cost: NONTERM 17: lbl71 -> lbl71 : C'=-1+A, E'=-2+A, [ A>=3+E && E>=0 && 1+C==A && B==A && A>=3 ], cost: (-2+A-E)*A 12: start0 -> lbl71 : B'=A, C'=1, E'=0, [ A>=2 ], cost: 2 13: start0 -> lbl71 : B'=A, C'=-1+A, E'=0, [ A>=3 ], cost: A Chained accelerated rules (with incoming rules): Start location: start0 12: start0 -> lbl71 : B'=A, C'=1, E'=0, [ A>=2 ], cost: 2 13: start0 -> lbl71 : B'=A, C'=-1+A, E'=0, [ A>=3 ], cost: A 18: start0 -> lbl71 : B'=A, C'=1, E'=1, [ A>=3 ], cost: 2+A 19: start0 -> lbl71 : B'=A, C'=-1+A, E'=-2+A, [ A>=3 ], cost: A*(-2+A)+A Removed unreachable locations (and leaf rules with constant cost): Start location: start0 13: start0 -> lbl71 : B'=A, C'=-1+A, E'=0, [ A>=3 ], cost: A 18: start0 -> lbl71 : B'=A, C'=1, E'=1, [ A>=3 ], cost: 2+A 19: start0 -> lbl71 : B'=A, C'=-1+A, E'=-2+A, [ A>=3 ], cost: A*(-2+A)+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start0 18: start0 -> lbl71 : B'=A, C'=1, E'=1, [ A>=3 ], cost: 2+A 19: start0 -> lbl71 : B'=A, C'=-1+A, E'=-2+A, [ A>=3 ], cost: A*(-2+A)+A Computing asymptotic complexity for rule 18 Solved the limit problem by the following transformations: Created initial limit problem: 2+A (+), -2+A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost 2+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Computing asymptotic complexity for rule 19 Solved the limit problem by the following transformations: Created initial limit problem: -A+A^2 (+), -2+A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost n^2-n has complexity: Poly(n^2) Found new complexity Poly(n^2). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^2) Cpx degree: 2 Solved cost: n^2-n Rule cost: A*(-2+A)+A Rule guard: [ A>=3 ] WORST_CASE(Omega(n^2),?) ---------------------------------------- (4) BOUNDS(n^2, INF)