/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 28 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 215 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: start(A, B, C, D) -> Com_1(stop(A, B, C, D)) :|: 1 >= A && B >= C && B <= C && D >= A && D <= A start(A, B, C, D) -> Com_1(lbl32(A, B, C, D - 1)) :|: A >= 2 && B >= C && B <= C && D >= A && D <= A lbl32(A, B, C, D) -> Com_1(stop(A, B, C, D)) :|: A >= 2 && D >= 1 && D <= 1 && B >= C && B <= C lbl32(A, B, C, D) -> Com_1(lbl32(A, B, C, D - 1)) :|: D >= 2 && D >= 1 && A >= D + 1 && B >= C && B <= C start0(A, B, C, D) -> Com_1(start(A, C, C, A)) :|: TRUE The start-symbols are:[start0_4] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0 + 4) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_0 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_0 >= 2 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: ?, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 2 /\ Ar_3 = 1 /\ Ar_1 = Ar_2 ] (Comp: ?, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_3 >= 2 /\ Ar_3 >= 1 /\ Ar_0 >= Ar_3 + 1 /\ Ar_1 = Ar_2 ] (Comp: ?, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start(Ar_0, Ar_2, Ar_2, Ar_0)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_0 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_0 >= 2 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: ?, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 2 /\ Ar_3 = 1 /\ Ar_1 = Ar_2 ] (Comp: ?, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_3 >= 2 /\ Ar_3 >= 1 /\ Ar_0 >= Ar_3 + 1 /\ Ar_1 = Ar_2 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start(Ar_0, Ar_2, Ar_2, Ar_0)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(start) = 1 Pol(stop) = 0 Pol(lbl32) = 1 Pol(start0) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 2 /\ Ar_3 = 1 /\ Ar_1 = Ar_2 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_0 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_0 >= 2 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: 1, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 2 /\ Ar_3 = 1 /\ Ar_1 = Ar_2 ] (Comp: ?, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_3 >= 2 /\ Ar_3 >= 1 /\ Ar_0 >= Ar_3 + 1 /\ Ar_1 = Ar_2 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start(Ar_0, Ar_2, Ar_2, Ar_0)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(start) = V_1 Pol(stop) = V_4 Pol(lbl32) = V_4 Pol(start0) = V_1 Pol(koat_start) = V_1 orients all transitions weakly and the transition lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_3 >= 2 /\ Ar_3 >= 1 /\ Ar_0 >= Ar_3 + 1 /\ Ar_1 = Ar_2 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ 1 >= Ar_0 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_0 >= 2 /\ Ar_1 = Ar_2 /\ Ar_3 = Ar_0 ] (Comp: 1, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= 2 /\ Ar_3 = 1 /\ Ar_1 = Ar_2 ] (Comp: Ar_0, Cost: 1) lbl32(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(lbl32(Ar_0, Ar_1, Ar_2, Ar_3 - 1)) [ Ar_3 >= 2 /\ Ar_3 >= 1 /\ Ar_0 >= Ar_3 + 1 /\ Ar_1 = Ar_2 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start(Ar_0, Ar_2, Ar_2, Ar_0)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0 + 4 Time: 0.078 sec (SMT: 0.066 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start0 0: start -> stop : [ 1>=A && B==C && D==A ], cost: 1 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 2: lbl32 -> stop : [ A>=2 && D==1 && B==C ], cost: 1 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && D>=1 && A>=1+D && B==C ], cost: 1 4: start0 -> start : B'=C, D'=A, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: start0 -> start : B'=C, D'=A, [], cost: 1 Removed unreachable and leaf rules: Start location: start0 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && D>=1 && A>=1+D && B==C ], cost: 1 4: start0 -> start : B'=C, D'=A, [], cost: 1 Simplified all rules, resulting in: Start location: start0 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && A>=1+D && B==C ], cost: 1 4: start0 -> start : B'=C, D'=A, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 3: lbl32 -> lbl32 : D'=-1+D, [ D>=2 && A>=1+D && B==C ], cost: 1 Accelerated rule 3 with metering function -1+D, yielding the new rule 5. Removing the simple loops: 3. Accelerated all simple loops using metering functions (where possible): Start location: start0 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 5: lbl32 -> lbl32 : D'=1, [ D>=2 && A>=1+D && B==C ], cost: -1+D 4: start0 -> start : B'=C, D'=A, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start0 1: start -> lbl32 : D'=-1+D, [ A>=2 && B==C && D==A ], cost: 1 6: start -> lbl32 : D'=1, [ A>=2 && B==C && D==A && -1+D>=2 ], cost: -1+D 4: start0 -> start : B'=C, D'=A, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: start0 6: start -> lbl32 : D'=1, [ A>=2 && B==C && D==A && -1+D>=2 ], cost: -1+D 4: start0 -> start : B'=C, D'=A, [], cost: 1 Eliminated locations (on linear paths): Start location: start0 7: start0 -> lbl32 : B'=C, D'=1, [ -1+A>=2 ], cost: A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start0 7: start0 -> lbl32 : B'=C, D'=1, [ -1+A>=2 ], cost: A Computing asymptotic complexity for rule 7 Solved the limit problem by the following transformations: Created initial limit problem: A (+), -2+A (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: A / n Resulting cost n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: n Rule cost: A Rule guard: [ -1+A>=2 ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)