/export/starexec/sandbox2/solver/bin/starexec_run_complexity /export/starexec/sandbox2/benchmark/theBenchmark.koat /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.koat # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The runtime complexity of the given CpxIntTrs could be proven to be BOUNDS(n^1, n^1). (0) CpxIntTrs (1) Koat Proof [FINISHED, 64 ms] (2) BOUNDS(1, n^1) (3) Loat Proof [FINISHED, 164 ms] (4) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: Complexity Int TRS consisting of the following rules: start(A, B, C, D, E, F) -> Com_1(stop(A, B, C, D, E, F)) :|: 0 >= A && B >= A && B <= A && C >= D && C <= D && E >= F && E <= F start(A, B, C, D, E, F) -> Com_1(lbl71(A, B - 1, C - 1, D, 1 + E, F)) :|: A >= 1 && B >= A && B <= A && C >= D && C <= D && E >= F && E <= F lbl71(A, B, C, D, E, F) -> Com_1(stop(A, B, C, D, E, F)) :|: D >= C + 1 && B >= 0 && B <= 0 && E + C >= F + D && E + C <= F + D && A + C >= D && A + C <= D lbl71(A, B, C, D, E, F) -> Com_1(lbl71(A, B - 1, C - 1, D, 1 + E, F)) :|: A + C >= D + 1 && D >= C + 1 && A + C >= D && E + C >= D + F && E + C <= D + F && B + D >= A + C && B + D <= A + C start0(A, B, C, D, E, F) -> Com_1(start(A, A, D, D, F, F)) :|: TRUE The start-symbols are:[start0_6] ---------------------------------------- (1) Koat Proof (FINISHED) YES(?, Ar_0 + 4) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: ?, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 1 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ Ar_3 >= Ar_2 + 1 /\ Ar_1 = 0 /\ Ar_4 + Ar_2 = Ar_5 + Ar_3 /\ Ar_0 + Ar_2 = Ar_3 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 + Ar_2 >= Ar_3 + 1 /\ Ar_3 >= Ar_2 + 1 /\ Ar_0 + Ar_2 >= Ar_3 /\ Ar_4 + Ar_2 = Ar_3 + Ar_5 /\ Ar_1 + Ar_3 = Ar_0 + Ar_2 ] (Comp: ?, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 1 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ Ar_3 >= Ar_2 + 1 /\ Ar_1 = 0 /\ Ar_4 + Ar_2 = Ar_5 + Ar_3 /\ Ar_0 + Ar_2 = Ar_3 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 + Ar_2 >= Ar_3 + 1 /\ Ar_3 >= Ar_2 + 1 /\ Ar_0 + Ar_2 >= Ar_3 /\ Ar_4 + Ar_2 = Ar_3 + Ar_5 /\ Ar_1 + Ar_3 = Ar_0 + Ar_2 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(start) = 1 Pol(stop) = 0 Pol(lbl71) = 1 Pol(start0) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ Ar_3 >= Ar_2 + 1 /\ Ar_1 = 0 /\ Ar_4 + Ar_2 = Ar_5 + Ar_3 /\ Ar_0 + Ar_2 = Ar_3 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 1 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ Ar_3 >= Ar_2 + 1 /\ Ar_1 = 0 /\ Ar_4 + Ar_2 = Ar_5 + Ar_3 /\ Ar_0 + Ar_2 = Ar_3 ] (Comp: ?, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 + Ar_2 >= Ar_3 + 1 /\ Ar_3 >= Ar_2 + 1 /\ Ar_0 + Ar_2 >= Ar_3 /\ Ar_4 + Ar_2 = Ar_3 + Ar_5 /\ Ar_1 + Ar_3 = Ar_0 + Ar_2 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(start) = V_1 Pol(stop) = V_2 Pol(lbl71) = V_2 Pol(start0) = V_1 Pol(koat_start) = V_1 orients all transitions weakly and the transition lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 + Ar_2 >= Ar_3 + 1 /\ Ar_3 >= Ar_2 + 1 /\ Ar_0 + Ar_2 >= Ar_3 /\ Ar_4 + Ar_2 = Ar_3 + Ar_5 /\ Ar_1 + Ar_3 = Ar_0 + Ar_2 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 >= Ar_0 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 >= 1 /\ Ar_1 = Ar_0 /\ Ar_2 = Ar_3 /\ Ar_4 = Ar_5 ] (Comp: 1, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(stop(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ Ar_3 >= Ar_2 + 1 /\ Ar_1 = 0 /\ Ar_4 + Ar_2 = Ar_5 + Ar_3 /\ Ar_0 + Ar_2 = Ar_3 ] (Comp: Ar_0, Cost: 1) lbl71(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(lbl71(Ar_0, Ar_1 - 1, Ar_2 - 1, Ar_3, Ar_4 + 1, Ar_5)) [ Ar_0 + Ar_2 >= Ar_3 + 1 /\ Ar_3 >= Ar_2 + 1 /\ Ar_0 + Ar_2 >= Ar_3 /\ Ar_4 + Ar_2 = Ar_3 + Ar_5 /\ Ar_1 + Ar_3 = Ar_0 + Ar_2 ] (Comp: 1, Cost: 1) start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start(Ar_0, Ar_0, Ar_3, Ar_3, Ar_5, Ar_5)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(start0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_0 + 4 Time: 0.138 sec (SMT: 0.116 sec) ---------------------------------------- (2) BOUNDS(1, n^1) ---------------------------------------- (3) Loat Proof (FINISHED) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: start0 0: start -> stop : [ 0>=A && B==A && C==D && E==F ], cost: 1 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 2: lbl71 -> stop : [ D>=1+C && B==0 && C+E==F+D && C+A==D ], cost: 1 3: lbl71 -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ C+A>=1+D && D>=1+C && C+A>=D && C+E==F+D && D+B==C+A ], cost: 1 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Removed unreachable and leaf rules: Start location: start0 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 3: lbl71 -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ C+A>=1+D && D>=1+C && C+A>=D && C+E==F+D && D+B==C+A ], cost: 1 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Simplified all rules, resulting in: Start location: start0 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 3: lbl71 -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ C+A>=1+D && D>=1+C && C+E==F+D && D+B==C+A ], cost: 1 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 3: lbl71 -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ C+A>=1+D && D>=1+C && C+E==F+D && D+B==C+A ], cost: 1 Accelerated rule 3 with metering function C-D+A, yielding the new rule 5. Removing the simple loops: 3. Accelerated all simple loops using metering functions (where possible): Start location: start0 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 5: lbl71 -> lbl71 : B'=-C+D-A+B, C'=D-A, E'=C-D+A+E, [ C+A>=1+D && D>=1+C && C+E==F+D && D+B==C+A ], cost: C-D+A 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: start0 1: start -> lbl71 : B'=-1+B, C'=-1+C, E'=1+E, [ A>=1 && B==A && C==D && E==F ], cost: 1 6: start -> lbl71 : B'=-C+D-A+B, C'=D-A, E'=C-D+A+E, [ A>=1 && B==A && C==D && E==F && -1+C+A>=1+D && C+E==F+D && -1+D+B==-1+C+A ], cost: C-D+A 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: start0 6: start -> lbl71 : B'=-C+D-A+B, C'=D-A, E'=C-D+A+E, [ A>=1 && B==A && C==D && E==F && -1+C+A>=1+D && C+E==F+D && -1+D+B==-1+C+A ], cost: C-D+A 4: start0 -> start : B'=A, C'=D, E'=F, [], cost: 1 Eliminated locations (on linear paths): Start location: start0 7: start0 -> lbl71 : B'=0, C'=D-A, E'=F+A, [ -1+D+A>=1+D ], cost: 1+A ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: start0 7: start0 -> lbl71 : B'=0, C'=D-A, E'=F+A, [ -1+D+A>=1+D ], cost: 1+A Computing asymptotic complexity for rule 7 Solved the limit problem by the following transformations: Created initial limit problem: -1+A (+/+!), 1+A (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {A==n} resulting limit problem: [solved] Solution: D / 0 A / n Resulting cost 1+n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 1+n Rule cost: 1+A Rule guard: [ -1+D+A>=1+D ] WORST_CASE(Omega(n^1),?) ---------------------------------------- (4) BOUNDS(n^1, INF)