/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ) Problem 1: Innermost Equivalent Processor: -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: HALF(s(s(x:S))) -> HALF(x:S) IF(ffalse,x:S,y:S) -> HALF(x:S) IF(ffalse,x:S,y:S) -> LOG2(half(x:S),y:S) INC(s(x:S)) -> INC(x:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) LOG(x:S) -> LOG2(x:S,0) LOG2(x:S,y:S) -> IF(le(x:S,s(0)),x:S,inc(y:S)) LOG2(x:S,y:S) -> INC(y:S) LOG2(x:S,y:S) -> LE(x:S,s(0)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) Problem 1: SCC Processor: -> Pairs: HALF(s(s(x:S))) -> HALF(x:S) IF(ffalse,x:S,y:S) -> HALF(x:S) IF(ffalse,x:S,y:S) -> LOG2(half(x:S),y:S) INC(s(x:S)) -> INC(x:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) LOG(x:S) -> LOG2(x:S,0) LOG2(x:S,y:S) -> IF(le(x:S,s(0)),x:S,inc(y:S)) LOG2(x:S,y:S) -> INC(y:S) LOG2(x:S,y:S) -> LE(x:S,s(0)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->->Cycle: ->->-> Pairs: INC(s(x:S)) -> INC(x:S) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->->Cycle: ->->-> Pairs: HALF(s(s(x:S))) -> HALF(x:S) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->->Cycle: ->->-> Pairs: IF(ffalse,x:S,y:S) -> LOG2(half(x:S),y:S) LOG2(x:S,y:S) -> IF(le(x:S,s(0)),x:S,inc(y:S)) ->->-> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) The problem is decomposed in 4 subproblems. Problem 1.1: Subterm Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Projection: pi(LE) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: INC(s(x:S)) -> INC(x:S) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Projection: pi(INC) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: HALF(s(s(x:S))) -> HALF(x:S) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Projection: pi(HALF) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Reduction Pairs Processor: -> Pairs: IF(ffalse,x:S,y:S) -> LOG2(half(x:S),y:S) LOG2(x:S,y:S) -> IF(le(x:S,s(0)),x:S,inc(y:S)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) -> Usable rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [half](X) = 1/2.X [if](X1,X2,X3) = 0 [inc](X) = 2.X + 1 [le](X1,X2) = 1/2.X1 [log](X) = 0 [log2](X1,X2) = 0 [0] = 0 [fSNonEmpty] = 0 [false] = 1/2 [s](X) = 2.X + 2 [true] = 0 [HALF](X) = 0 [IF](X1,X2,X3) = 2.X1 + X2 [INC](X) = 0 [LE](X1,X2) = 0 [LOG](X) = 0 [LOG2](X1,X2) = 2.X1 + 1/2 Problem 1.4: SCC Processor: -> Pairs: LOG2(x:S,y:S) -> IF(le(x:S,s(0)),x:S,inc(y:S)) -> Rules: half(0) -> 0 half(s(0)) -> 0 half(s(s(x:S))) -> s(half(x:S)) if(ffalse,x:S,y:S) -> log2(half(x:S),y:S) if(ttrue,x:S,s(y:S)) -> y:S inc(0) -> 0 inc(s(x:S)) -> s(inc(x:S)) le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) log(x:S) -> log2(x:S,0) log2(x:S,y:S) -> if(le(x:S,s(0)),x:S,inc(y:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.