/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) SplitQDPProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) SemLabProof [SOUND, 0 ms] (9) QDP (10) DependencyGraphProof [EQUIVALENT, 0 ms] (11) QDP (12) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (13) QDP (14) DependencyGraphProof [EQUIVALENT, 0 ms] (15) QDP (16) PisEmptyProof [SOUND, 0 ms] (17) TRUE (18) QDP (19) QDPBoundsTAProof [EQUIVALENT, 102 ms] (20) QDP (21) PisEmptyProof [EQUIVALENT, 0 ms] (22) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(y, f(x, f(a, x))) -> F(f(a, f(x, a)), f(a, y)) F(y, f(x, f(a, x))) -> F(a, f(x, a)) F(y, f(x, f(a, x))) -> F(x, a) F(y, f(x, f(a, x))) -> F(a, y) F(x, f(x, y)) -> F(f(f(x, a), a), a) F(x, f(x, y)) -> F(f(x, a), a) F(x, f(x, y)) -> F(x, a) The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(y, f(x, f(a, x))) -> F(a, y) F(y, f(x, f(a, x))) -> F(f(a, f(x, a)), f(a, y)) The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) SplitQDPProof (EQUIVALENT) We show in the first subproof that some pairs and rules can be removed, afterwards, we continue with the remaining DP-Problem ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: F(y, f(x, f(a, x))) -> F(a, y) F(y, f(x, f(a, x))) -> F(f(a, f(x, a)), f(a, y)) The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 1 f: 0 F: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.1-0(a., y) F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.1-0(a., f.0-1(x, a.)), f.1-0(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.1-0(a., f.1-1(x, a.)), f.1-0(a., y)) F.1-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.1-0(a., f.0-1(x, a.)), f.1-1(a., y)) F.1-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.1-0(a., f.1-1(x, a.)), f.1-1(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.1-0(a., y) F.1-0(y, f.0-0(x, f.1-0(a., x))) -> F.1-1(a., y) F.1-0(y, f.1-0(x, f.1-1(a., x))) -> F.1-1(a., y) The TRS R consists of the following rules: f.0-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.1-0(a., f.0-1(x, a.)), f.1-0(a., y)) f.0-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.1-0(a., f.1-1(x, a.)), f.1-0(a., y)) f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.1-0(a., f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.1-0(a., f.1-1(x, a.)), f.1-1(a., y)) f.0-0(x, f.0-0(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.1-0(a., f.0-1(x, a.)), f.1-0(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.1-0(a., f.1-1(x, a.)), f.1-0(a., y)) The TRS R consists of the following rules: f.0-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.1-0(a., f.0-1(x, a.)), f.1-0(a., y)) f.0-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.1-0(a., f.1-1(x, a.)), f.1-0(a., y)) f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.1-0(a., f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.1-0(a., f.1-1(x, a.)), f.1-1(a., y)) f.0-0(x, f.0-0(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f.0-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.1-0(a., f.0-1(x, a.)), f.1-0(a., y)) f.0-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.1-0(a., f.1-1(x, a.)), f.1-0(a., y)) f.0-0(x, f.0-0(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.1-0(a., f.0-1(x, a.)), f.1-0(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.1-0(a., f.1-1(x, a.)), f.1-0(a., y)) The TRS R consists of the following rules: f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.1-0(a., f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.1-0(a., f.1-1(x, a.)), f.1-1(a., y)) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.1-0(a., f.1-1(x, a.)), f.1-0(a., y)) The TRS R consists of the following rules: f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.1-0(a., f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.1-0(a., f.1-1(x, a.)), f.1-1(a., y)) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) PisEmptyProof (SOUND) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (17) TRUE ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: F(y, f(x, f(a, x))) -> F(f(a, f(x, a)), f(a, y)) The TRS R consists of the following rules: f(x, f(x, y)) -> f(f(f(x, a), a), a) f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPBoundsTAProof (EQUIVALENT) The DP-Problem (P, R) could be shown to be Match-(raise-)DP-Bounded [TAB_NONLEFTLINEAR] by 0 for the Rule: F(y, f(x, f(a, x))) -> F(f(a, f(x, a)), f(a, y)) by considering the usable rules: f(x, f(x, y)) -> f(f(f(x, a), a), a) f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) The compatible tree automaton used to show the Match-(raise-)DP-Boundedness is represented by: final states : [0] transitions: a0() -> 29 #0() -> 16 f0(4, 5) -> 17 f0(2, 3) -> 18 f0(2, 7) -> 6 F0(1, 6) -> 0 f0(2, 5) -> 19 f0(9, 5) -> 8 f0(8, 5) -> 20 f0(10, 5) -> 8 f0(2, 2) -> 12 f0(11, 12) -> 21 f0(2, 13) -> 18 f0(2, 1) -> 14 F0(1, 14) -> 0 f0(11, 5) -> 19 f0(5, 5) -> 19 f0(3, 5) -> 19 f0(13, 5) -> 19 f0(15, 3) -> 18 f0(15, 7) -> 6 f0(15, 5) -> 19 f0(15, 2) -> 12 f0(15, 13) -> 18 f0(15, 1) -> 14 f0(4, 15) -> 17 f0(2, 15) -> 22 f0(9, 15) -> 8 f0(8, 15) -> 20 f0(10, 15) -> 8 f0(11, 15) -> 19 f0(5, 15) -> 19 f0(3, 15) -> 19 f0(13, 15) -> 19 f0(16, 5) -> 17 f0(2, 16) -> 6 f0(17, 5) -> 23 f0(2, 17) -> 18 f0(18, 12) -> 21 f0(18, 5) -> 19 f0(2, 18) -> 14 f0(19, 5) -> 23 f0(2, 19) -> 18 f0(20, 5) -> 23 f0(20, 12) -> 21 f0(2, 20) -> 14 f0(15, 15) -> 22 f0(15, 16) -> 6 f0(15, 17) -> 18 f0(15, 18) -> 14 f0(15, 19) -> 18 f0(15, 20) -> 14 f0(16, 15) -> 17 f0(17, 15) -> 23 f0(18, 15) -> 19 f0(19, 15) -> 23 f0(20, 15) -> 23 F0(18, 6) -> 0 F0(18, 14) -> 0 F0(20, 6) -> 0 F0(20, 14) -> 0 F0(1, 20) -> 0 F0(1, 21) -> 0 F0(18, 20) -> 0 F0(18, 21) -> 0 F0(20, 20) -> 0 F0(20, 21) -> 0 f0(22, 5) -> 23 f0(11, 22) -> 21 f0(2, 22) -> 18 f0(23, 5) -> 24 f0(2, 23) -> 18 f0(24, 5) -> 24 f0(24, 12) -> 21 f0(2, 24) -> 25 F0(24, 6) -> 0 F0(24, 14) -> 0 F0(1, 24) -> 0 F0(24, 24) -> 0 f0(25, 12) -> 21 f0(25, 5) -> 19 f0(2, 25) -> 14 F0(25, 6) -> 0 F0(25, 14) -> 0 F0(1, 25) -> 0 F0(25, 25) -> 0 f0(15, 28) -> 27 f0(27, 28) -> 26 f0(26, 28) -> 14 f0(29, 3) -> 18 f0(29, 7) -> 6 f0(29, 5) -> 19 f0(29, 2) -> 12 f0(29, 13) -> 18 f0(29, 1) -> 14 f0(29, 15) -> 22 f0(29, 16) -> 6 f0(29, 17) -> 18 f0(29, 18) -> 14 f0(29, 19) -> 18 f0(29, 20) -> 14 f0(29, 22) -> 18 f0(29, 23) -> 18 f0(29, 24) -> 25 f0(29, 25) -> 14 f0(29, 28) -> 27 f0(4, 29) -> 17 f0(2, 29) -> 22 f0(9, 29) -> 8 f0(8, 29) -> 20 f0(10, 29) -> 8 f0(11, 29) -> 19 f0(5, 29) -> 19 f0(3, 29) -> 19 f0(13, 29) -> 19 f0(15, 29) -> 30 f0(16, 29) -> 17 f0(17, 29) -> 23 f0(18, 29) -> 19 f0(19, 29) -> 23 f0(20, 29) -> 23 f0(22, 29) -> 23 f0(23, 29) -> 24 f0(24, 29) -> 24 f0(25, 29) -> 19 f0(27, 29) -> 26 f0(26, 29) -> 14 f0(18, 22) -> 21 f0(20, 22) -> 21 f0(22, 15) -> 23 f0(15, 22) -> 18 f0(24, 22) -> 21 f0(25, 22) -> 21 f0(23, 15) -> 24 f0(15, 23) -> 18 f0(24, 15) -> 24 f0(15, 24) -> 25 f0(25, 15) -> 19 f0(15, 25) -> 14 f0(29, 29) -> 30 f0(20, 5) -> 19 f0(20, 15) -> 19 f0(23, 5) -> 23 f0(23, 15) -> 23 f0(20, 29) -> 19 f0(23, 29) -> 23 f0(24, 5) -> 23 f0(24, 15) -> 23 f0(24, 29) -> 23 f0(24, 5) -> 19 f0(24, 15) -> 19 f0(2, 24) -> 14 f0(15, 24) -> 14 f0(29, 24) -> 14 f0(24, 29) -> 19 F0(18, 24) -> 0 F0(18, 25) -> 0 F0(20, 24) -> 0 F0(20, 25) -> 0 F0(24, 20) -> 0 F0(25, 20) -> 0 F0(24, 21) -> 0 F0(25, 21) -> 0 F0(24, 25) -> 0 F0(25, 24) -> 0 f0(30, 5) -> 23 f0(30, 15) -> 23 f0(30, 28) -> 26 f0(11, 30) -> 21 f0(2, 30) -> 18 f0(15, 30) -> 18 f0(18, 30) -> 21 f0(20, 30) -> 21 f0(24, 30) -> 21 f0(25, 30) -> 21 ---------------------------------------- (20) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: f(x, f(x, y)) -> f(f(f(x, a), a), a) f(y, f(x, f(a, x))) -> f(f(a, f(x, a)), f(a, y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (22) YES