/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 0] prefix(_0) -> prefix(_0) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {}. We have r|p = prefix(_0) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = prefix(_0) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 2 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [2 DP problems]: ## DP problem: Dependency pairs = [prefix^#(_0) -> prefix^#(_0)] TRS = {app(nil,_0) -> _0, app(cons(_0,_1),_2) -> cons(_0,n__app(activate(_1),_2)), from(_0) -> cons(_0,n__from(s(_0))), zWadr(nil,_0) -> nil, zWadr(_0,nil) -> nil, zWadr(cons(_0,_1),cons(_2,_3)) -> cons(app(_2,cons(_0,n__nil)),n__zWadr(activate(_1),activate(_3))), prefix(_0) -> cons(nil,n__zWadr(_0,prefix(_0))), app(_0,_1) -> n__app(_0,_1), from(_0) -> n__from(_0), nil -> n__nil, zWadr(_0,_1) -> n__zWadr(_0,_1), activate(n__app(_0,_1)) -> app(_0,_1), activate(n__from(_0)) -> from(_0), activate(n__nil) -> nil, activate(n__zWadr(_0,_1)) -> zWadr(_0,_1), activate(_0) -> _0} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [app^#(cons(_0,_1),_2) -> activate^#(_1), activate^#(n__app(_0,_1)) -> app^#(_0,_1), zWadr^#(cons(_0,_1),cons(_2,_3)) -> app^#(_2,cons(_0,n__nil)), activate^#(n__zWadr(_0,_1)) -> zWadr^#(_0,_1), zWadr^#(cons(_0,_1),cons(_2,_3)) -> activate^#(_3), zWadr^#(cons(_0,_1),cons(_2,_3)) -> activate^#(_1)] TRS = {app(nil,_0) -> _0, app(cons(_0,_1),_2) -> cons(_0,n__app(activate(_1),_2)), from(_0) -> cons(_0,n__from(s(_0))), zWadr(nil,_0) -> nil, zWadr(_0,nil) -> nil, zWadr(cons(_0,_1),cons(_2,_3)) -> cons(app(_2,cons(_0,n__nil)),n__zWadr(activate(_1),activate(_3))), prefix(_0) -> cons(nil,n__zWadr(_0,prefix(_0))), app(_0,_1) -> n__app(_0,_1), from(_0) -> n__from(_0), nil -> n__nil, zWadr(_0,_1) -> n__zWadr(_0,_1), activate(n__app(_0,_1)) -> app(_0,_1), activate(n__from(_0)) -> from(_0), activate(n__nil) -> nil, activate(n__zWadr(_0,_1)) -> zWadr(_0,_1), activate(_0) -> _0} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## Some DP problems could not be proved finite. ## Now, we try to prove that one of these problems is infinite. ## Trying to find a loop (forward=true, backward=true, max=20) # max_depth=20, unfold_variables=false: # Iteration 0: success, found a loop, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = prefix^#(_0) -> prefix^#(_0) [trans] is in U_IR^0. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 8