/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 10 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) QDPOrderProof [EQUIVALENT, 107 ms] (32) QDP (33) QDPOrderProof [EQUIVALENT, 135 ms] (34) QDP (35) QDPOrderProof [EQUIVALENT, 85 ms] (36) QDP (37) UsableRulesProof [EQUIVALENT, 0 ms] (38) QDP (39) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) QDP (43) QDPSizeChangeProof [EQUIVALENT, 0 ms] (44) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) ACTIVE(length(nil)) -> MARK(0) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) ACTIVE(length(cons(X, Y))) -> S(length1(Y)) ACTIVE(length(cons(X, Y))) -> LENGTH1(Y) ACTIVE(length1(X)) -> MARK(length(X)) ACTIVE(length1(X)) -> LENGTH(X) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> ACTIVE(s(mark(X))) MARK(s(X)) -> S(mark(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(nil) -> ACTIVE(nil) MARK(0) -> ACTIVE(0) MARK(length1(X)) -> ACTIVE(length1(X)) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) LENGTH(mark(X)) -> LENGTH(X) LENGTH(active(X)) -> LENGTH(X) LENGTH1(mark(X)) -> LENGTH1(X) LENGTH1(active(X)) -> LENGTH1(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 12 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH1(active(X)) -> LENGTH1(X) LENGTH1(mark(X)) -> LENGTH1(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH1(active(X)) -> LENGTH1(X) LENGTH1(mark(X)) -> LENGTH1(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH1(active(X)) -> LENGTH1(X) The graph contains the following edges 1 > 1 *LENGTH1(mark(X)) -> LENGTH1(X) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: LENGTH(active(X)) -> LENGTH(X) LENGTH(mark(X)) -> LENGTH(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LENGTH(active(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 *LENGTH(mark(X)) -> LENGTH(X) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> ACTIVE(s(mark(X))) ACTIVE(length1(X)) -> MARK(length(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(length1(X)) -> ACTIVE(length1(X)) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = MARK from(x1) = from ACTIVE(x1) = x1 mark(x1) = x1 cons(x1, x2) = cons s(x1) = s length(x1) = length length1(x1) = length1 active(x1) = x1 nil = nil 0 = 0 Recursive path order with status [RPO]. Quasi-Precedence: [MARK, from, s, length, length1, 0] > cons Status: MARK: multiset status from: multiset status cons: multiset status s: multiset status length: multiset status length1: multiset status nil: multiset status 0: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length1(active(X)) -> length1(X) length1(mark(X)) -> length1(X) length(active(X)) -> length(X) length(mark(X)) -> length(X) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(cons(X1, X2)) -> MARK(X1) MARK(s(X)) -> ACTIVE(s(mark(X))) ACTIVE(length1(X)) -> MARK(length(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(length1(X)) -> ACTIVE(length1(X)) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> ACTIVE(s(mark(X))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = MARK from(x1) = from ACTIVE(x1) = x1 mark(x1) = x1 cons(x1, x2) = cons(x1) s(x1) = s length(x1) = length length1(x1) = length1 active(x1) = x1 nil = nil 0 = 0 Recursive path order with status [RPO]. Quasi-Precedence: [MARK, from, length, length1] > cons_1 > s [MARK, from, length, length1] > 0 Status: MARK: multiset status from: multiset status cons_1: multiset status s: multiset status length: multiset status length1: multiset status nil: multiset status 0: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) length1(active(X)) -> length1(X) length1(mark(X)) -> length1(X) length(active(X)) -> length(X) length(mark(X)) -> length(X) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(cons(X1, X2)) -> MARK(X1) ACTIVE(length1(X)) -> MARK(length(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(length1(X)) -> ACTIVE(length1(X)) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(from(X)) -> ACTIVE(from(mark(X))) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ACTIVE_1(x_1) ) = max{0, 2x_1 - 2} POL( from_1(x_1) ) = x_1 + 2 POL( mark_1(x_1) ) = x_1 POL( active_1(x_1) ) = x_1 POL( cons_2(x_1, x_2) ) = x_1 POL( s_1(x_1) ) = 2x_1 POL( length_1(x_1) ) = 0 POL( length1_1(x_1) ) = 0 POL( nil ) = 0 POL( 0 ) = 0 POL( MARK_1(x_1) ) = 2x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(from(X)) -> active(from(mark(X))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(length(cons(X, Y))) -> mark(s(length1(Y))) mark(s(X)) -> active(s(mark(X))) active(length1(X)) -> mark(length(X)) mark(length(X)) -> active(length(X)) mark(length1(X)) -> active(length1(X)) mark(nil) -> active(nil) mark(0) -> active(0) from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) length1(active(X)) -> length1(X) length1(mark(X)) -> length1(X) length(active(X)) -> length(X) length(mark(X)) -> length(X) active(length(nil)) -> mark(0) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(cons(X1, X2)) -> MARK(X1) ACTIVE(length1(X)) -> MARK(length(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(length1(X)) -> ACTIVE(length1(X)) The TRS R consists of the following rules: active(from(X)) -> mark(cons(X, from(s(X)))) active(length(nil)) -> mark(0) active(length(cons(X, Y))) -> mark(s(length1(Y))) active(length1(X)) -> mark(length(X)) mark(from(X)) -> active(from(mark(X))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(s(X)) -> active(s(mark(X))) mark(length(X)) -> active(length(X)) mark(nil) -> active(nil) mark(0) -> active(0) mark(length1(X)) -> active(length1(X)) from(mark(X)) -> from(X) from(active(X)) -> from(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) length(mark(X)) -> length(X) length(active(X)) -> length(X) length1(mark(X)) -> length1(X) length1(active(X)) -> length1(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(cons(X1, X2)) -> MARK(X1) ACTIVE(length1(X)) -> MARK(length(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(length1(X)) -> ACTIVE(length1(X)) The TRS R consists of the following rules: length1(active(X)) -> length1(X) length1(mark(X)) -> length1(X) length(active(X)) -> length(X) length(mark(X)) -> length(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: ACTIVE(length(cons(X, Y))) -> MARK(s(length1(Y))) MARK(cons(X1, X2)) -> MARK(X1) The following rules are removed from R: length1(active(X)) -> length1(X) length1(mark(X)) -> length1(X) length(active(X)) -> length(X) length(mark(X)) -> length(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) Used ordering: POLO with Polynomial interpretation [POLO]: POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 POL(length(x_1)) = 2*x_1 POL(length1(x_1)) = 2*x_1 POL(mark(x_1)) = 2*x_1 POL(s(x_1)) = x_1 ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(length1(X)) -> MARK(length(X)) MARK(s(X)) -> MARK(X) MARK(length(X)) -> ACTIVE(length(X)) MARK(length1(X)) -> ACTIVE(length1(X)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(s(X)) -> MARK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(s(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (44) YES