/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 3] length(cons(_0,n__zeros)) -> length(cons(0,n__zeros)) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {_0->0}. We have r|p = length(cons(0,n__zeros)) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = length(cons(_0,n__zeros)) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 2 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [2 DP problems]: ## DP problem: Dependency pairs = [length^#(cons(_0,_1)) -> length^#(activate(_1))] TRS = {zeros -> cons(0,n__zeros), and(tt,_0) -> activate(_0), length(nil) -> 0, length(cons(_0,_1)) -> s(length(activate(_1))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,n__take(_0,activate(_2))), zeros -> n__zeros, take(_0,_1) -> n__take(_0,_1), activate(n__zeros) -> zeros, activate(n__take(_0,_1)) -> take(activate(_0),activate(_1)), activate(_0) -> _0} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [activate^#(n__take(_0,_1)) -> take^#(activate(_0),activate(_1)), activate^#(n__take(_0,_1)) -> activate^#(_0), activate^#(n__take(_0,_1)) -> activate^#(_1), take^#(s(_0),cons(_1,_2)) -> activate^#(_2)] TRS = {zeros -> cons(0,n__zeros), and(tt,_0) -> activate(_0), length(nil) -> 0, length(cons(_0,_1)) -> s(length(activate(_1))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,n__take(_0,activate(_2))), zeros -> n__zeros, take(_0,_1) -> n__take(_0,_1), activate(n__zeros) -> zeros, activate(n__take(_0,_1)) -> take(activate(_0),activate(_1)), activate(_0) -> _0} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## Some DP problems could not be proved finite. ## Now, we try to prove that one of these problems is infinite. ## Trying to find a loop (forward=true, backward=false, max=-1) # max_depth=3, unfold_variables=false: # Iteration 0: no loop found, 1 unfolded rule generated. # Iteration 1: no loop found, 1 unfolded rule generated. # Iteration 2: no loop found, 2 unfolded rules generated. # Iteration 3: success, found a loop, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = length^#(cons(_0,_1)) -> length^#(activate(_1)) [trans] is in U_IR^0. We build a unit triple from L0. ==> L1 = length^#(cons(_0,_1)) -> length^#(activate(_1)) [unit] is in U_IR^1. Let p1 = [0]. We unfold the rule of L1 forwards at position p1 with the rule activate(n__zeros) -> zeros. ==> L2 = length^#(cons(_0,n__zeros)) -> length^#(zeros) [unit] is in U_IR^2. Let p2 = [0]. We unfold the rule of L2 forwards at position p2 with the rule zeros -> cons(0,n__zeros). ==> L3 = length^#(cons(_0,n__zeros)) -> length^#(cons(0,n__zeros)) [unit] is in U_IR^3. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 81