/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 134 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) UsableRulesProof [EQUIVALENT, 0 ms] (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(activate(X1), X2) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: AND(true, X) -> ACTIVATE(X) IF(true, X, Y) -> ACTIVATE(X) IF(false, X, Y) -> ACTIVATE(Y) ADD(0, X) -> ACTIVATE(X) ADD(s(X), Y) -> S(n__add(activate(X), activate(Y))) ADD(s(X), Y) -> ACTIVATE(X) ADD(s(X), Y) -> ACTIVATE(Y) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) FROM(X) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), X2) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> FROM(X) ACTIVATE(n__s(X)) -> S(X) The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(activate(X1), X2) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), X2) ADD(0, X) -> ACTIVATE(X) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> FROM(X) FROM(X) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ADD(s(X), Y) -> ACTIVATE(X) ADD(s(X), Y) -> ACTIVATE(Y) The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(activate(X1), X2) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__add(X1, X2)) -> ADD(activate(X1), X2) ADD(0, X) -> ACTIVATE(X) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__from(X)) -> FROM(X) ADD(s(X), Y) -> ACTIVATE(X) ADD(s(X), Y) -> ACTIVATE(Y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = [1] POL(ACTIVATE(x_1)) = [1/4] + [1/4]x_1 POL(ADD(x_1, x_2)) = x_1 + [1/4]x_2 POL(FIRST(x_1, x_2)) = [1/2]x_1 + x_2 POL(FROM(x_1)) = [1/4] + [1/4]x_1 POL(activate(x_1)) = x_1 POL(add(x_1, x_2)) = [4]x_1 + [2]x_2 POL(cons(x_1, x_2)) = [1/2]x_1 + [1/4]x_2 POL(first(x_1, x_2)) = [4]x_1 + [4]x_2 POL(from(x_1)) = [1/4] + x_1 POL(n__add(x_1, x_2)) = [4]x_1 + [2]x_2 POL(n__first(x_1, x_2)) = [4]x_1 + [4]x_2 POL(n__from(x_1)) = [1/4] + x_1 POL(n__s(x_1)) = [1/2] + [1/2]x_1 POL(nil) = [1/4] POL(s(x_1)) = [1/2] + [1/2]x_1 The value of delta used in the strict ordering is 1/16. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__add(X1, X2)) -> add(activate(X1), X2) add(0, X) -> activate(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X add(X1, X2) -> n__add(X1, X2) first(0, X) -> nil first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) s(X) -> n__s(X) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Y) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) FROM(X) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(X) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(activate(X1), X2) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The TRS R consists of the following rules: and(true, X) -> activate(X) and(false, Y) -> false if(true, X, Y) -> activate(X) if(false, X, Y) -> activate(Y) add(0, X) -> activate(X) add(s(X), Y) -> s(n__add(activate(X), activate(Y))) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(activate(Y), n__first(activate(X), activate(Z))) from(X) -> cons(activate(X), n__from(n__s(activate(X)))) add(X1, X2) -> n__add(X1, X2) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1, X2)) -> add(activate(X1), X2) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) The graph contains the following edges 1 > 1 *ACTIVATE(n__add(X1, X2)) -> ACTIVATE(X1) The graph contains the following edges 1 > 1 *ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) The graph contains the following edges 1 > 1 ---------------------------------------- (12) YES