/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 49 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 30 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> FROM(activate(X)) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__first(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__from(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( FIRST_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( activate_1(x_1) ) = x_1 POL( n__first_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( first_2(x_1, x_2) ) = x_1 + x_2 + 1 POL( n__from_1(x_1) ) = x_1 + 2 POL( from_1(x_1) ) = x_1 + 2 POL( n__s_1(x_1) ) = x_1 + 1 POL( s_1(x_1) ) = x_1 + 1 POL( cons_2(x_1, x_2) ) = max{0, x_2 - 2} POL( 0 ) = 0 POL( nil ) = 1 POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) first(0, X) -> nil first(X1, X2) -> n__first(X1, X2) s(X) -> n__s(X) first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__first(X1, X2)) -> FIRST(activate(X1), activate(X2)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVATE(x1) = x1 n__first(x1, x2) = n__first(x2) FIRST(x1, x2) = x2 activate(x1) = activate(x1) cons(x1, x2) = x2 first(x1, x2) = first(x2) n__from(x1) = n__from from(x1) = from n__s(x1) = n__s s(x1) = s nil = nil Knuth-Bendix order [KBO] with precedence:activate_1 > s > n__s activate_1 > first_1 > n__first_1 activate_1 > from > n__from activate_1 > nil and weight map: s=1 n__first_1=2 n__from=2 first_1=2 from=2 activate_1=0 n__s=1 nil=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) from(X) -> n__from(X) first(0, X) -> nil first(X1, X2) -> n__first(X1, X2) s(X) -> n__s(X) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(s(X), cons(Y, Z)) -> ACTIVATE(Z) The TRS R consists of the following rules: first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) from(X) -> cons(X, n__from(n__s(X))) first(X1, X2) -> n__first(X1, X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (10) TRUE