/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following pattern rule was generated by the strategy presented in Sect. 3 of [Emmes, Enger, Giesl, IJCAR'12]: [iteration = 1] pairNs{}^n{} -> incr(pairNs){}^n{} We apply Theorem 8 of [Emmes, Enger, Giesl, IJCAR'12] on this rule with m = 1, b = 0, pi = [0], sigma' = {} and mu' = {}. Hence the term pairNs, obtained from instantiating n with 0 in the left-hand side of the rule, starts an infinite derivation w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 2 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [2 DP problems]: ## DP problem: Dependency pairs = [pairNs^# -> oddNs^#, oddNs^# -> pairNs^#] TRS = {pairNs -> cons(0,n__incr(oddNs)), oddNs -> incr(pairNs), incr(cons(_0,_1)) -> cons(s(_0),n__incr(activate(_1))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,n__take(_0,activate(_2))), zip(nil,_0) -> nil, zip(_0,nil) -> nil, zip(cons(_0,_1),cons(_2,_3)) -> cons(pair(_0,_2),n__zip(activate(_1),activate(_3))), tail(cons(_0,_1)) -> activate(_1), repItems(nil) -> nil, repItems(cons(_0,_1)) -> cons(_0,n__cons(_0,n__repItems(activate(_1)))), incr(_0) -> n__incr(_0), take(_0,_1) -> n__take(_0,_1), zip(_0,_1) -> n__zip(_0,_1), cons(_0,_1) -> n__cons(_0,_1), repItems(_0) -> n__repItems(_0), activate(n__incr(_0)) -> incr(_0), activate(n__take(_0,_1)) -> take(_0,_1), activate(n__zip(_0,_1)) -> zip(_0,_1), activate(n__cons(_0,_1)) -> cons(_0,_1), activate(n__repItems(_0)) -> repItems(_0), activate(_0) -> _0} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Too many argument filtering possibilities (279936)! Aborting! ## Trying with Knuth-Bendix orders... This DP problem is too complex! Aborting! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [incr^#(cons(_0,_1)) -> activate^#(_1), activate^#(n__incr(_0)) -> incr^#(_0), take^#(s(_0),cons(_1,_2)) -> activate^#(_2), activate^#(n__take(_0,_1)) -> take^#(_0,_1), zip^#(cons(_0,_1),cons(_2,_3)) -> activate^#(_1), activate^#(n__zip(_0,_1)) -> zip^#(_0,_1), repItems^#(cons(_0,_1)) -> activate^#(_1), activate^#(n__repItems(_0)) -> repItems^#(_0), zip^#(cons(_0,_1),cons(_2,_3)) -> activate^#(_3)] TRS = {pairNs -> cons(0,n__incr(oddNs)), oddNs -> incr(pairNs), incr(cons(_0,_1)) -> cons(s(_0),n__incr(activate(_1))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,n__take(_0,activate(_2))), zip(nil,_0) -> nil, zip(_0,nil) -> nil, zip(cons(_0,_1),cons(_2,_3)) -> cons(pair(_0,_2),n__zip(activate(_1),activate(_3))), tail(cons(_0,_1)) -> activate(_1), repItems(nil) -> nil, repItems(cons(_0,_1)) -> cons(_0,n__cons(_0,n__repItems(activate(_1)))), incr(_0) -> n__incr(_0), take(_0,_1) -> n__take(_0,_1), zip(_0,_1) -> n__zip(_0,_1), cons(_0,_1) -> n__cons(_0,_1), repItems(_0) -> n__repItems(_0), activate(n__incr(_0)) -> incr(_0), activate(n__take(_0,_1)) -> take(_0,_1), activate(n__zip(_0,_1)) -> zip(_0,_1), activate(n__cons(_0,_1)) -> cons(_0,_1), activate(n__repItems(_0)) -> repItems(_0), activate(_0) -> _0} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Too many argument filtering possibilities (279936)! Aborting! ## Trying with Knuth-Bendix orders... This DP problem is too complex! Aborting! Don't know whether this DP problem is finite. ## Some DP problems could not be proved finite. ## Now, we try to prove that one of these problems is infinite. ## Trying to prove non-looping nontermination # Iteration 0: non-looping nontermination not proved, 2 unfolded rules generated. # Iteration 1: success, non-looping nontermination proved, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. IR contains the dependency pair pairNs^# -> oddNs^#. We apply (I) of [Emmes, Enger, Giesl, IJCAR'12] to this dependency pair. ==> P0 = pairNs^#{}^n{} -> oddNs^#{}^n{} is in U_IR^0. We apply (VI) of [Emmes, Enger, Giesl, IJCAR'12] to this pattern rule at position epsilon using the pattern rule oddNs{}^n{} -> incr(pairNs){}^n{} obtained from IR. ==> P1 = pairNs^#{}^n{} -> incr(pairNs){}^n{} is in U_IR^1. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 7