/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) QTRS Reverse [EQUIVALENT, 0 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 19 ms] (4) QTRS (5) AAECC Innermost [EQUIVALENT, 0 ms] (6) QTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QReductionProof [EQUIVALENT, 0 ms] (14) QDP (15) MNOCProof [EQUIVALENT, 0 ms] (16) QDP (17) NonTerminationLoopProof [COMPLETE, 0 ms] (18) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(X) -> h(activate(X)) c -> d h(n__d) -> g(n__c) d -> n__d c -> n__c activate(n__d) -> d activate(n__c) -> c activate(X) -> X Q is empty. ---------------------------------------- (1) QTRS Reverse (EQUIVALENT) We applied the QTRS Reverse Processor [REVERSE]. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(X) -> activate(h(X)) c'(x) -> d'(x) n__d'(h(x)) -> n__c'(g(x)) d'(x) -> n__d'(x) c'(x) -> n__c'(x) n__d'(activate(x)) -> d'(x) n__c'(activate(x)) -> c'(x) activate(X) -> X Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(activate(x_1)) = 1 + x_1 POL(c'(x_1)) = 1 + x_1 POL(d'(x_1)) = 1 + x_1 POL(g(x_1)) = 1 + x_1 POL(h(x_1)) = x_1 POL(n__c'(x_1)) = x_1 POL(n__d'(x_1)) = 1 + x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: c'(x) -> n__c'(x) n__d'(activate(x)) -> d'(x) activate(X) -> X ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(X) -> activate(h(X)) c'(x) -> d'(x) n__d'(h(x)) -> n__c'(g(x)) d'(x) -> n__d'(x) n__c'(activate(x)) -> c'(x) Q is empty. ---------------------------------------- (5) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is g(X) -> activate(h(X)) The TRS R 2 is c'(x) -> d'(x) n__d'(h(x)) -> n__c'(g(x)) d'(x) -> n__d'(x) n__c'(activate(x)) -> c'(x) The signature Sigma is {c'_1, d'_1, n__d'_1, n__c'_1} ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(X) -> activate(h(X)) c'(x) -> d'(x) n__d'(h(x)) -> n__c'(g(x)) d'(x) -> n__d'(x) n__c'(activate(x)) -> c'(x) The set Q consists of the following terms: g(x0) c'(x0) n__d'(h(x0)) d'(x0) n__c'(activate(x0)) ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: C'(x) -> D'(x) N__D'(h(x)) -> N__C'(g(x)) N__D'(h(x)) -> G(x) D'(x) -> N__D'(x) N__C'(activate(x)) -> C'(x) The TRS R consists of the following rules: g(X) -> activate(h(X)) c'(x) -> d'(x) n__d'(h(x)) -> n__c'(g(x)) d'(x) -> n__d'(x) n__c'(activate(x)) -> c'(x) The set Q consists of the following terms: g(x0) c'(x0) n__d'(h(x0)) d'(x0) n__c'(activate(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: D'(x) -> N__D'(x) N__D'(h(x)) -> N__C'(g(x)) N__C'(activate(x)) -> C'(x) C'(x) -> D'(x) The TRS R consists of the following rules: g(X) -> activate(h(X)) c'(x) -> d'(x) n__d'(h(x)) -> n__c'(g(x)) d'(x) -> n__d'(x) n__c'(activate(x)) -> c'(x) The set Q consists of the following terms: g(x0) c'(x0) n__d'(h(x0)) d'(x0) n__c'(activate(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: D'(x) -> N__D'(x) N__D'(h(x)) -> N__C'(g(x)) N__C'(activate(x)) -> C'(x) C'(x) -> D'(x) The TRS R consists of the following rules: g(X) -> activate(h(X)) The set Q consists of the following terms: g(x0) c'(x0) n__d'(h(x0)) d'(x0) n__c'(activate(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. c'(x0) n__d'(h(x0)) d'(x0) n__c'(activate(x0)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: D'(x) -> N__D'(x) N__D'(h(x)) -> N__C'(g(x)) N__C'(activate(x)) -> C'(x) C'(x) -> D'(x) The TRS R consists of the following rules: g(X) -> activate(h(X)) The set Q consists of the following terms: g(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: D'(x) -> N__D'(x) N__D'(h(x)) -> N__C'(g(x)) N__C'(activate(x)) -> C'(x) C'(x) -> D'(x) The TRS R consists of the following rules: g(X) -> activate(h(X)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (17) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = N__D'(h(x)) evaluates to t =N__D'(h(x)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence N__D'(h(x)) -> N__C'(g(x)) with rule N__D'(h(x')) -> N__C'(g(x')) at position [] and matcher [x' / x] N__C'(g(x)) -> N__C'(activate(h(x))) with rule g(X) -> activate(h(X)) at position [0] and matcher [X / x] N__C'(activate(h(x))) -> C'(h(x)) with rule N__C'(activate(x')) -> C'(x') at position [] and matcher [x' / h(x)] C'(h(x)) -> D'(h(x)) with rule C'(x') -> D'(x') at position [] and matcher [x' / h(x)] D'(h(x)) -> N__D'(h(x)) with rule D'(x) -> N__D'(x) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (18) NO