/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 1066 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) QDPOrderProof [EQUIVALENT, 162 ms] (11) QDP (12) DependencyGraphProof [EQUIVALENT, 0 ms] (13) TRUE (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) QDPOrderProof [EQUIVALENT, 170 ms] (21) QDP (22) PisEmptyProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) TransformationProof [EQUIVALENT, 0 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) DependencyGraphProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) DependencyGraphProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 8 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) DependencyGraphProof [EQUIVALENT, 0 ms] (46) QDP (47) TransformationProof [EQUIVALENT, 6 ms] (48) QDP (49) DependencyGraphProof [EQUIVALENT, 0 ms] (50) QDP (51) TransformationProof [EQUIVALENT, 0 ms] (52) QDP (53) TransformationProof [EQUIVALENT, 0 ms] (54) QDP (55) DependencyGraphProof [EQUIVALENT, 0 ms] (56) QDP (57) TransformationProof [EQUIVALENT, 15 ms] (58) QDP (59) DependencyGraphProof [EQUIVALENT, 0 ms] (60) QDP (61) TransformationProof [EQUIVALENT, 0 ms] (62) QDP (63) QDPOrderProof [EQUIVALENT, 256 ms] (64) QDP (65) QDPOrderProof [EQUIVALENT, 265 ms] (66) QDP (67) QDPOrderProof [EQUIVALENT, 668 ms] (68) QDP (69) QDPOrderProof [EQUIVALENT, 92 ms] (70) QDP (71) QDP (72) TransformationProof [EQUIVALENT, 0 ms] (73) QDP (74) TransformationProof [EQUIVALENT, 0 ms] (75) QDP (76) TransformationProof [EQUIVALENT, 0 ms] (77) QDP (78) DependencyGraphProof [EQUIVALENT, 0 ms] (79) QDP (80) TransformationProof [EQUIVALENT, 0 ms] (81) QDP (82) DependencyGraphProof [EQUIVALENT, 0 ms] (83) QDP (84) TransformationProof [EQUIVALENT, 0 ms] (85) QDP (86) DependencyGraphProof [EQUIVALENT, 0 ms] (87) QDP (88) TransformationProof [EQUIVALENT, 0 ms] (89) QDP (90) TransformationProof [EQUIVALENT, 8 ms] (91) QDP (92) DependencyGraphProof [EQUIVALENT, 0 ms] (93) QDP (94) TransformationProof [EQUIVALENT, 0 ms] (95) QDP (96) DependencyGraphProof [EQUIVALENT, 0 ms] (97) QDP (98) TransformationProof [EQUIVALENT, 19 ms] (99) QDP (100) DependencyGraphProof [EQUIVALENT, 0 ms] (101) QDP (102) TransformationProof [EQUIVALENT, 23 ms] (103) QDP (104) TransformationProof [EQUIVALENT, 0 ms] (105) QDP (106) DependencyGraphProof [EQUIVALENT, 0 ms] (107) QDP (108) TransformationProof [EQUIVALENT, 0 ms] (109) QDP (110) QDPOrderProof [EQUIVALENT, 70 ms] (111) QDP (112) QDPOrderProof [EQUIVALENT, 258 ms] (113) QDP (114) QDPOrderProof [EQUIVALENT, 257 ms] (115) QDP (116) QDPOrderProof [EQUIVALENT, 986 ms] (117) QDP (118) QDPOrderProof [EQUIVALENT, 60 ms] (119) QDP (120) NonTerminationLoopProof [COMPLETE, 88 ms] (121) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ZEROS -> CONS(0, n__zeros) ZEROS -> 0^1 U41^1(tt, V2) -> U42^1(isNatIList(activate(V2))) U41^1(tt, V2) -> ISNATILIST(activate(V2)) U41^1(tt, V2) -> ACTIVATE(V2) U51^1(tt, V2) -> U52^1(isNatList(activate(V2))) U51^1(tt, V2) -> ISNATLIST(activate(V2)) U51^1(tt, V2) -> ACTIVATE(V2) U61^1(tt, V2) -> U62^1(isNatIList(activate(V2))) U61^1(tt, V2) -> ISNATILIST(activate(V2)) U61^1(tt, V2) -> ACTIVATE(V2) U71^1(tt, L, N) -> U72^1(isNat(activate(N)), activate(L)) U71^1(tt, L, N) -> ISNAT(activate(N)) U71^1(tt, L, N) -> ACTIVATE(N) U71^1(tt, L, N) -> ACTIVATE(L) U72^1(tt, L) -> S(length(activate(L))) U72^1(tt, L) -> LENGTH(activate(L)) U72^1(tt, L) -> ACTIVATE(L) U81^1(tt) -> NIL U91^1(tt, IL, M, N) -> U92^1(isNat(activate(M)), activate(IL), activate(M), activate(N)) U91^1(tt, IL, M, N) -> ISNAT(activate(M)) U91^1(tt, IL, M, N) -> ACTIVATE(M) U91^1(tt, IL, M, N) -> ACTIVATE(IL) U91^1(tt, IL, M, N) -> ACTIVATE(N) U92^1(tt, IL, M, N) -> U93^1(isNat(activate(N)), activate(IL), activate(M), activate(N)) U92^1(tt, IL, M, N) -> ISNAT(activate(N)) U92^1(tt, IL, M, N) -> ACTIVATE(N) U92^1(tt, IL, M, N) -> ACTIVATE(IL) U92^1(tt, IL, M, N) -> ACTIVATE(M) U93^1(tt, IL, M, N) -> CONS(activate(N), n__take(activate(M), activate(IL))) U93^1(tt, IL, M, N) -> ACTIVATE(N) U93^1(tt, IL, M, N) -> ACTIVATE(M) U93^1(tt, IL, M, N) -> ACTIVATE(IL) ISNAT(n__length(V1)) -> U11^1(isNatList(activate(V1))) ISNAT(n__length(V1)) -> ISNATLIST(activate(V1)) ISNAT(n__length(V1)) -> ACTIVATE(V1) ISNAT(n__s(V1)) -> U21^1(isNat(activate(V1))) ISNAT(n__s(V1)) -> ISNAT(activate(V1)) ISNAT(n__s(V1)) -> ACTIVATE(V1) ISNATILIST(V) -> U31^1(isNatList(activate(V))) ISNATILIST(V) -> ISNATLIST(activate(V)) ISNATILIST(V) -> ACTIVATE(V) ISNATILIST(n__cons(V1, V2)) -> U41^1(isNat(activate(V1)), activate(V2)) ISNATILIST(n__cons(V1, V2)) -> ISNAT(activate(V1)) ISNATILIST(n__cons(V1, V2)) -> ACTIVATE(V1) ISNATILIST(n__cons(V1, V2)) -> ACTIVATE(V2) ISNATLIST(n__cons(V1, V2)) -> U51^1(isNat(activate(V1)), activate(V2)) ISNATLIST(n__cons(V1, V2)) -> ISNAT(activate(V1)) ISNATLIST(n__cons(V1, V2)) -> ACTIVATE(V1) ISNATLIST(n__cons(V1, V2)) -> ACTIVATE(V2) ISNATLIST(n__take(V1, V2)) -> U61^1(isNat(activate(V1)), activate(V2)) ISNATLIST(n__take(V1, V2)) -> ISNAT(activate(V1)) ISNATLIST(n__take(V1, V2)) -> ACTIVATE(V1) ISNATLIST(n__take(V1, V2)) -> ACTIVATE(V2) LENGTH(nil) -> 0^1 LENGTH(cons(N, L)) -> U71^1(isNatList(activate(L)), activate(L), N) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) LENGTH(cons(N, L)) -> ACTIVATE(L) TAKE(0, IL) -> U81^1(isNatIList(IL)) TAKE(0, IL) -> ISNATILIST(IL) TAKE(s(M), cons(N, IL)) -> U91^1(isNatIList(activate(IL)), activate(IL), M, N) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) ACTIVATE(n__zeros) -> ZEROS ACTIVATE(n__take(X1, X2)) -> TAKE(activate(X1), activate(X2)) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__0) -> 0^1 ACTIVATE(n__length(X)) -> LENGTH(activate(X)) ACTIVATE(n__length(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> S(activate(X)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__cons(X1, X2)) -> CONS(activate(X1), X2) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__nil) -> NIL The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 18 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__take(X1, X2)) -> TAKE(activate(X1), activate(X2)) TAKE(0, IL) -> ISNATILIST(IL) ISNATILIST(V) -> ISNATLIST(activate(V)) ISNATLIST(n__cons(V1, V2)) -> U51^1(isNat(activate(V1)), activate(V2)) U51^1(tt, V2) -> ISNATLIST(activate(V2)) ISNATLIST(n__cons(V1, V2)) -> ISNAT(activate(V1)) ISNAT(n__length(V1)) -> ISNATLIST(activate(V1)) ISNATLIST(n__cons(V1, V2)) -> ACTIVATE(V1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X2) ACTIVATE(n__length(X)) -> LENGTH(activate(X)) LENGTH(cons(N, L)) -> U71^1(isNatList(activate(L)), activate(L), N) U71^1(tt, L, N) -> U72^1(isNat(activate(N)), activate(L)) U72^1(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(V1, V2)) -> ACTIVATE(V2) ACTIVATE(n__length(X)) -> ACTIVATE(X) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ISNATLIST(n__take(V1, V2)) -> U61^1(isNat(activate(V1)), activate(V2)) U61^1(tt, V2) -> ISNATILIST(activate(V2)) ISNATILIST(V) -> ACTIVATE(V) ISNATILIST(n__cons(V1, V2)) -> U41^1(isNat(activate(V1)), activate(V2)) U41^1(tt, V2) -> ISNATILIST(activate(V2)) ISNATILIST(n__cons(V1, V2)) -> ISNAT(activate(V1)) ISNAT(n__length(V1)) -> ACTIVATE(V1) ISNAT(n__s(V1)) -> ISNAT(activate(V1)) ISNAT(n__s(V1)) -> ACTIVATE(V1) ISNATILIST(n__cons(V1, V2)) -> ACTIVATE(V1) ISNATILIST(n__cons(V1, V2)) -> ACTIVATE(V2) U41^1(tt, V2) -> ACTIVATE(V2) U61^1(tt, V2) -> ACTIVATE(V2) ISNATLIST(n__take(V1, V2)) -> ISNAT(activate(V1)) ISNATLIST(n__take(V1, V2)) -> ACTIVATE(V1) ISNATLIST(n__take(V1, V2)) -> ACTIVATE(V2) LENGTH(cons(N, L)) -> ACTIVATE(L) U72^1(tt, L) -> ACTIVATE(L) U71^1(tt, L, N) -> ISNAT(activate(N)) U71^1(tt, L, N) -> ACTIVATE(N) U71^1(tt, L, N) -> ACTIVATE(L) U51^1(tt, V2) -> ACTIVATE(V2) TAKE(s(M), cons(N, IL)) -> U91^1(isNatIList(activate(IL)), activate(IL), M, N) U91^1(tt, IL, M, N) -> U92^1(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92^1(tt, IL, M, N) -> U93^1(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93^1(tt, IL, M, N) -> ACTIVATE(N) U93^1(tt, IL, M, N) -> ACTIVATE(M) U93^1(tt, IL, M, N) -> ACTIVATE(IL) U92^1(tt, IL, M, N) -> ISNAT(activate(N)) U92^1(tt, IL, M, N) -> ACTIVATE(N) U92^1(tt, IL, M, N) -> ACTIVATE(IL) U92^1(tt, IL, M, N) -> ACTIVATE(M) U91^1(tt, IL, M, N) -> ISNAT(activate(M)) U91^1(tt, IL, M, N) -> ACTIVATE(M) U91^1(tt, IL, M, N) -> ACTIVATE(IL) U91^1(tt, IL, M, N) -> ACTIVATE(N) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVATE(n__take(X1, X2)) -> TAKE(activate(X1), activate(X2)) ISNATLIST(n__cons(V1, V2)) -> ISNAT(activate(V1)) ISNAT(n__length(V1)) -> ISNATLIST(activate(V1)) ISNATLIST(n__cons(V1, V2)) -> ACTIVATE(V1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__take(X1, X2)) -> ACTIVATE(X2) LENGTH(cons(N, L)) -> ISNATLIST(activate(L)) ISNATLIST(n__cons(V1, V2)) -> ACTIVATE(V2) ACTIVATE(n__length(X)) -> ACTIVATE(X) ISNATLIST(n__take(V1, V2)) -> U61^1(isNat(activate(V1)), activate(V2)) ISNATILIST(V) -> ACTIVATE(V) ISNATILIST(n__cons(V1, V2)) -> ISNAT(activate(V1)) ISNAT(n__length(V1)) -> ACTIVATE(V1) ISNATILIST(n__cons(V1, V2)) -> ACTIVATE(V1) ISNATILIST(n__cons(V1, V2)) -> ACTIVATE(V2) U41^1(tt, V2) -> ACTIVATE(V2) U61^1(tt, V2) -> ACTIVATE(V2) ISNATLIST(n__take(V1, V2)) -> ISNAT(activate(V1)) ISNATLIST(n__take(V1, V2)) -> ACTIVATE(V1) ISNATLIST(n__take(V1, V2)) -> ACTIVATE(V2) LENGTH(cons(N, L)) -> ACTIVATE(L) U72^1(tt, L) -> ACTIVATE(L) U71^1(tt, L, N) -> ISNAT(activate(N)) U71^1(tt, L, N) -> ACTIVATE(N) U71^1(tt, L, N) -> ACTIVATE(L) U51^1(tt, V2) -> ACTIVATE(V2) U93^1(tt, IL, M, N) -> ACTIVATE(N) U93^1(tt, IL, M, N) -> ACTIVATE(M) U93^1(tt, IL, M, N) -> ACTIVATE(IL) U92^1(tt, IL, M, N) -> ISNAT(activate(N)) U92^1(tt, IL, M, N) -> ACTIVATE(N) U92^1(tt, IL, M, N) -> ACTIVATE(IL) U92^1(tt, IL, M, N) -> ACTIVATE(M) U91^1(tt, IL, M, N) -> ISNAT(activate(M)) U91^1(tt, IL, M, N) -> ACTIVATE(M) U91^1(tt, IL, M, N) -> ACTIVATE(IL) U91^1(tt, IL, M, N) -> ACTIVATE(N) TAKE(s(M), cons(N, IL)) -> ACTIVATE(IL) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( ISNAT_1(x_1) ) = 2x_1 POL( ISNATILIST_1(x_1) ) = 2x_1 + 1 POL( ISNATLIST_1(x_1) ) = x_1 + 1 POL( LENGTH_1(x_1) ) = 2x_1 + 2 POL( TAKE_2(x_1, x_2) ) = 2x_1 + 2x_2 + 1 POL( U41^1_2(x_1, x_2) ) = 2x_2 + 1 POL( U51^1_2(x_1, x_2) ) = x_2 + 1 POL( U61^1_2(x_1, x_2) ) = 2x_2 + 1 POL( U71^1_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 + 2 POL( U72^1_2(x_1, x_2) ) = 2x_2 + 2 POL( U91^1_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + 2x_4 + 1 POL( U92^1_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + 2x_4 + 1 POL( U93^1_4(x_1, ..., x_4) ) = 2x_2 + x_3 + 2x_4 + 1 POL( U41_2(x_1, x_2) ) = max{0, -2} POL( U51_2(x_1, x_2) ) = max{0, -2} POL( U61_2(x_1, x_2) ) = max{0, -2} POL( U71_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 + 2 POL( U72_2(x_1, x_2) ) = 2x_2 + 2 POL( U91_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + 2x_4 + 2 POL( U92_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + 2x_4 + 2 POL( U93_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + 2x_4 + 2 POL( cons_2(x_1, x_2) ) = 2x_1 + x_2 POL( isNat_1(x_1) ) = max{0, -2} POL( length_1(x_1) ) = 2x_1 + 2 POL( s_1(x_1) ) = x_1 POL( take_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( isNatList_1(x_1) ) = max{0, -2} POL( isNatIList_1(x_1) ) = max{0, -2} POL( U11_1(x_1) ) = max{0, -2} POL( U21_1(x_1) ) = max{0, -2} POL( U31_1(x_1) ) = max{0, -2} POL( U42_1(x_1) ) = max{0, -2} POL( U52_1(x_1) ) = max{0, -2} POL( U62_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( activate_1(x_1) ) = x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__length_1(x_1) ) = 2x_1 + 2 POL( n__s_1(x_1) ) = x_1 POL( n__cons_2(x_1, x_2) ) = 2x_1 + x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( tt ) = 0 POL( U81_1(x_1) ) = max{0, -2} POL( ACTIVATE_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) take(X1, X2) -> n__take(X1, X2) length(nil) -> 0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) U11(tt) -> tt U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) take(0, IL) -> U81(isNatIList(IL)) U81(tt) -> nil take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: TAKE(0, IL) -> ISNATILIST(IL) ISNATILIST(V) -> ISNATLIST(activate(V)) ISNATLIST(n__cons(V1, V2)) -> U51^1(isNat(activate(V1)), activate(V2)) U51^1(tt, V2) -> ISNATLIST(activate(V2)) ACTIVATE(n__length(X)) -> LENGTH(activate(X)) LENGTH(cons(N, L)) -> U71^1(isNatList(activate(L)), activate(L), N) U71^1(tt, L, N) -> U72^1(isNat(activate(N)), activate(L)) U72^1(tt, L) -> LENGTH(activate(L)) ACTIVATE(n__s(X)) -> ACTIVATE(X) ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) U61^1(tt, V2) -> ISNATILIST(activate(V2)) ISNATILIST(n__cons(V1, V2)) -> U41^1(isNat(activate(V1)), activate(V2)) U41^1(tt, V2) -> ISNATILIST(activate(V2)) ISNAT(n__s(V1)) -> ISNAT(activate(V1)) ISNAT(n__s(V1)) -> ACTIVATE(V1) TAKE(s(M), cons(N, IL)) -> U91^1(isNatIList(activate(IL)), activate(IL), M, N) U91^1(tt, IL, M, N) -> U92^1(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92^1(tt, IL, M, N) -> U93^1(isNat(activate(N)), activate(IL), activate(M), activate(N)) TAKE(s(M), cons(N, IL)) -> ISNATILIST(activate(IL)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 9 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: U71^1(tt, L, N) -> U72^1(isNat(activate(N)), activate(L)) U72^1(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> U71^1(isNatList(activate(L)), activate(L), N) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. U71^1(tt, L, N) -> U72^1(isNat(activate(N)), activate(L)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( LENGTH_1(x_1) ) = 2x_1 + 2 POL( U71^1_3(x_1, ..., x_3) ) = 2x_1 + 2x_2 + 2 POL( U72^1_2(x_1, x_2) ) = 2x_2 + 2 POL( U41_2(x_1, x_2) ) = 2 POL( U51_2(x_1, x_2) ) = 2x_2 POL( U61_2(x_1, x_2) ) = x_1 POL( U71_3(x_1, ..., x_3) ) = 2x_2 POL( U72_2(x_1, x_2) ) = 2x_2 POL( U91_4(x_1, ..., x_4) ) = 2x_3 POL( U92_4(x_1, ..., x_4) ) = 2x_3 POL( U93_4(x_1, ..., x_4) ) = 2x_3 POL( cons_2(x_1, x_2) ) = 2x_2 POL( isNatList_1(x_1) ) = x_1 POL( length_1(x_1) ) = x_1 POL( s_1(x_1) ) = 2x_1 POL( take_2(x_1, x_2) ) = x_1 POL( isNat_1(x_1) ) = x_1 POL( U11_1(x_1) ) = x_1 POL( U21_1(x_1) ) = max{0, 2x_1 - 2} POL( U31_1(x_1) ) = 2 POL( U42_1(x_1) ) = x_1 POL( isNatIList_1(x_1) ) = 2 POL( U52_1(x_1) ) = max{0, 2x_1 - 2} POL( U62_1(x_1) ) = x_1 POL( n__take_2(x_1, x_2) ) = x_1 POL( activate_1(x_1) ) = x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__0 ) = 2 POL( 0 ) = 2 POL( n__length_1(x_1) ) = x_1 POL( n__s_1(x_1) ) = 2x_1 POL( n__cons_2(x_1, x_2) ) = 2x_2 POL( n__nil ) = 2 POL( nil ) = 2 POL( tt ) = 2 POL( U81_1(x_1) ) = 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) take(X1, X2) -> n__take(X1, X2) length(nil) -> 0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) U11(tt) -> tt U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) isNatIList(n__zeros) -> tt U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) take(0, IL) -> U81(isNatIList(IL)) U81(tt) -> nil take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: U72^1(tt, L) -> LENGTH(activate(L)) LENGTH(cons(N, L)) -> U71^1(isNatList(activate(L)), activate(L), N) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (13) TRUE ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__s(X)) -> ACTIVATE(X) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) ACTIVATE(n__s(X)) -> ACTIVATE(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVATE(n__cons(X1, X2)) -> ACTIVATE(X1) The graph contains the following edges 1 > 1 *ACTIVATE(n__s(X)) -> ACTIVATE(X) The graph contains the following edges 1 > 1 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(n__s(V1)) -> ISNAT(activate(V1)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNAT(n__s(V1)) -> ISNAT(activate(V1)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(ISNAT(x_1)) = [[5A]] + [[3A]] * x_1 >>> <<< POL(n__s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(n__0) = [[0A]] >>> <<< POL(0) = [[1A]] >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(n__cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> <<< POL(U71(x_1, x_2, x_3)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 + [[0A]] * x_3 >>> <<< POL(isNatList(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(tt) = [[2A]] >>> <<< POL(U51(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(isNat(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(U11(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U61(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[-I]] * x_2 >>> <<< POL(U21(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(U62(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[2A]] + [[1A]] * x_1 >>> <<< POL(U31(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(U41(x_1, x_2)) = [[2A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(U42(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U52(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(U72(x_1, x_2)) = [[3A]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(U81(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U91(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[1A]] * x_3 + [[0A]] * x_4 >>> <<< POL(U92(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[1A]] * x_3 + [[0A]] * x_4 >>> <<< POL(U93(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[1A]] * x_3 + [[0A]] * x_4 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(X1, X2) -> n__take(X1, X2) length(nil) -> 0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) isNat(n__s(V1)) -> U21(isNat(activate(V1))) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) take(0, IL) -> U81(isNatIList(IL)) U81(tt) -> nil take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros 0 -> n__0 nil -> n__nil ---------------------------------------- (21) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, V2) -> ISNATLIST(activate(V2)) ISNATLIST(n__cons(V1, V2)) -> U51^1(isNat(activate(V1)), activate(V2)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U51^1(tt, V2) -> ISNATLIST(activate(V2)) at position [0] we obtained the following new rules [LPAR04]: (U51^1(tt, n__zeros) -> ISNATLIST(zeros),U51^1(tt, n__zeros) -> ISNATLIST(zeros)) (U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))),U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1)))) (U51^1(tt, n__0) -> ISNATLIST(0),U51^1(tt, n__0) -> ISNATLIST(0)) (U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))),U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0)))) (U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))),U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0)))) (U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)),U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1))) (U51^1(tt, n__nil) -> ISNATLIST(nil),U51^1(tt, n__nil) -> ISNATLIST(nil)) (U51^1(tt, x0) -> ISNATLIST(x0),U51^1(tt, x0) -> ISNATLIST(x0)) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(V1, V2)) -> U51^1(isNat(activate(V1)), activate(V2)) U51^1(tt, n__zeros) -> ISNATLIST(zeros) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) U51^1(tt, n__0) -> ISNATLIST(0) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) U51^1(tt, n__nil) -> ISNATLIST(nil) U51^1(tt, x0) -> ISNATLIST(x0) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(V1, V2)) -> U51^1(isNat(activate(V1)), activate(V2)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(n__zeros, y1)) -> U51^1(isNat(zeros), activate(y1)),ISNATLIST(n__cons(n__zeros, y1)) -> U51^1(isNat(zeros), activate(y1))) (ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)),ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1))) (ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1)),ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1))) (ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)),ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1))) (ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)),ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1))) (ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)),ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1))) (ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)),ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1))) (ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)),ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1))) ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__zeros) -> ISNATLIST(zeros) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) U51^1(tt, n__0) -> ISNATLIST(0) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) U51^1(tt, n__nil) -> ISNATLIST(nil) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(n__zeros, y1)) -> U51^1(isNat(zeros), activate(y1)) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1)) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U51^1(tt, n__zeros) -> ISNATLIST(zeros) at position [0] we obtained the following new rules [LPAR04]: (U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)),U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros))) (U51^1(tt, n__zeros) -> ISNATLIST(n__zeros),U51^1(tt, n__zeros) -> ISNATLIST(n__zeros)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) U51^1(tt, n__0) -> ISNATLIST(0) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) U51^1(tt, n__nil) -> ISNATLIST(nil) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(n__zeros, y1)) -> U51^1(isNat(zeros), activate(y1)) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1)) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) U51^1(tt, n__zeros) -> ISNATLIST(n__zeros) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__zeros, y1)) -> U51^1(isNat(zeros), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__0) -> ISNATLIST(0) ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__nil) -> ISNATLIST(nil) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(n__zeros, y1)) -> U51^1(isNat(zeros), activate(y1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)),ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0))) (ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__zeros), activate(y0)),ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__zeros), activate(y0))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__0) -> ISNATLIST(0) ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__nil) -> ISNATLIST(nil) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__zeros), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1)) U51^1(tt, n__0) -> ISNATLIST(0) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, n__nil) -> ISNATLIST(nil) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(n__0, y1)) -> U51^1(isNat(0), activate(y1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)),ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) U51^1(tt, n__0) -> ISNATLIST(0) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, n__nil) -> ISNATLIST(nil) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U51^1(tt, n__0) -> ISNATLIST(0) at position [0] we obtained the following new rules [LPAR04]: (U51^1(tt, n__0) -> ISNATLIST(n__0),U51^1(tt, n__0) -> ISNATLIST(n__0)) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, n__nil) -> ISNATLIST(nil) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__0) -> ISNATLIST(n__0) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__nil) -> ISNATLIST(nil) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U51^1(tt, n__nil) -> ISNATLIST(nil) at position [0] we obtained the following new rules [LPAR04]: (U51^1(tt, n__nil) -> ISNATLIST(n__nil),U51^1(tt, n__nil) -> ISNATLIST(n__nil)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__nil) -> ISNATLIST(n__nil) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(n__nil, y1)) -> U51^1(isNat(nil), activate(y1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(n__nil, y0)) -> U51^1(isNat(n__nil), activate(y0)),ISNATLIST(n__cons(n__nil, y0)) -> U51^1(isNat(n__nil), activate(y0))) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) ISNATLIST(n__cons(n__nil, y0)) -> U51^1(isNat(n__nil), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U51^1(tt, n__zeros) -> ISNATLIST(cons(0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)),U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros))) (U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros)),U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros))) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__cons(0, n__zeros)), activate(y0)),ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__cons(0, n__zeros)), activate(y0))) (ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(n__0, n__zeros)), activate(y0)),ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(n__0, n__zeros)), activate(y0))) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__cons(0, n__zeros)), activate(y0)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(n__0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(n__0, n__zeros)), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(cons(n__0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules [LPAR04]: (ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__cons(n__0, n__zeros)), activate(y0)),ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__cons(n__0, n__zeros)), activate(y0))) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros)) ISNATLIST(n__cons(n__zeros, y0)) -> U51^1(isNat(n__cons(n__0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U51^1(tt, n__zeros) -> ISNATLIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (U51^1(tt, n__zeros) -> ISNATLIST(n__cons(n__0, n__zeros)),U51^1(tt, n__zeros) -> ISNATLIST(n__cons(n__0, n__zeros))) ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. U51^1(tt, n__length(x0)) -> ISNATLIST(length(activate(x0))) U51^1(tt, n__s(x0)) -> ISNATLIST(s(activate(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( U51^1_2(x_1, x_2) ) = 2x_2 POL( ISNATLIST_1(x_1) ) = x_1 POL( U41_2(x_1, x_2) ) = max{0, -2} POL( U51_2(x_1, x_2) ) = max{0, -2} POL( U61_2(x_1, x_2) ) = max{0, -2} POL( U71_3(x_1, ..., x_3) ) = 1 POL( U72_2(x_1, x_2) ) = 1 POL( U91_4(x_1, ..., x_4) ) = max{0, -2} POL( U92_4(x_1, ..., x_4) ) = max{0, -2} POL( U93_4(x_1, ..., x_4) ) = max{0, -2} POL( cons_2(x_1, x_2) ) = 2x_2 POL( length_1(x_1) ) = 1 POL( s_1(x_1) ) = 1 POL( take_2(x_1, x_2) ) = 0 POL( U11_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( U21_1(x_1) ) = 1 POL( isNat_1(x_1) ) = 1 POL( U31_1(x_1) ) = max{0, -2} POL( U42_1(x_1) ) = max{0, -2} POL( isNatIList_1(x_1) ) = max{0, -2} POL( U52_1(x_1) ) = max{0, -2} POL( U62_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = max{0, -2} POL( activate_1(x_1) ) = x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__length_1(x_1) ) = 1 POL( n__s_1(x_1) ) = 1 POL( n__cons_2(x_1, x_2) ) = 2x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( U81_1(x_1) ) = max{0, -2} POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) take(X1, X2) -> n__take(X1, X2) isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) 0 -> n__0 isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATLIST(n__cons(n__take(x0, x1), y1)) -> U51^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATLIST(n__cons(n__length(x0), y1)) -> U51^1(isNat(length(activate(x0))), activate(y1)) ISNATLIST(n__cons(n__s(x0), y1)) -> U51^1(isNat(s(activate(x0))), activate(y1)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( U51^1_2(x_1, x_2) ) = x_1 + 2x_2 POL( ISNATLIST_1(x_1) ) = 2x_1 POL( U41_2(x_1, x_2) ) = max{0, -2} POL( U51_2(x_1, x_2) ) = max{0, -2} POL( U61_2(x_1, x_2) ) = max{0, -2} POL( U71_3(x_1, ..., x_3) ) = 2 POL( U72_2(x_1, x_2) ) = 2 POL( U91_4(x_1, ..., x_4) ) = 2x_2 + 2x_4 + 2 POL( U92_4(x_1, ..., x_4) ) = 2x_2 + 2x_4 + 2 POL( U93_4(x_1, ..., x_4) ) = 2x_2 + 2x_4 + 2 POL( cons_2(x_1, x_2) ) = 2x_1 + x_2 POL( length_1(x_1) ) = 2 POL( s_1(x_1) ) = 2 POL( take_2(x_1, x_2) ) = 2x_2 + 2 POL( U11_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = max{0, -2} POL( U21_1(x_1) ) = max{0, -2} POL( isNat_1(x_1) ) = max{0, x_1 - 1} POL( U31_1(x_1) ) = max{0, -2} POL( U42_1(x_1) ) = max{0, -2} POL( isNatIList_1(x_1) ) = max{0, -2} POL( U52_1(x_1) ) = max{0, -2} POL( U62_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = 2x_2 + 2 POL( activate_1(x_1) ) = x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__length_1(x_1) ) = 2 POL( n__s_1(x_1) ) = 2 POL( n__cons_2(x_1, x_2) ) = 2x_1 + x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( U81_1(x_1) ) = 2 POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) take(X1, X2) -> n__take(X1, X2) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) 0 -> n__0 isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. U51^1(tt, n__take(x0, x1)) -> ISNATLIST(take(activate(x0), activate(x1))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(U51^1(x_1, x_2)) = [[2A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(tt) = [[2A]] >>> <<< POL(n__take(x_1, x_2)) = [[2A]] + [[1A]] * x_1 + [[-I]] * x_2 >>> <<< POL(ISNATLIST(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(take(x_1, x_2)) = [[2A]] + [[1A]] * x_1 + [[-I]] * x_2 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(n__cons(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(cons(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(isNat(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(0) = [[1A]] >>> <<< POL(n__0) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(n__s(x_1)) = [[2A]] + [[1A]] * x_1 >>> <<< POL(s(x_1)) = [[2A]] + [[1A]] * x_1 >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> <<< POL(U81(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[1A]] + [[1A]] * x_1 >>> <<< POL(U91(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[-I]] * x_2 + [[2A]] * x_3 + [[-I]] * x_4 >>> <<< POL(U11(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(isNatList(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(U21(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U71(x_1, x_2, x_3)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 + [[-I]] * x_3 >>> <<< POL(U51(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(U61(x_1, x_2)) = [[2A]] + [[-I]] * x_1 + [[-I]] * x_2 >>> <<< POL(U62(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U31(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(U41(x_1, x_2)) = [[2A]] + [[-I]] * x_1 + [[-I]] * x_2 >>> <<< POL(U42(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U52(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(U72(x_1, x_2)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(U92(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[-I]] * x_2 + [[2A]] * x_3 + [[-I]] * x_4 >>> <<< POL(U93(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[-I]] * x_2 + [[2A]] * x_3 + [[-I]] * x_4 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) take(X1, X2) -> n__take(X1, X2) cons(X1, X2) -> n__cons(X1, X2) isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) 0 -> n__0 length(nil) -> 0 length(X) -> n__length(X) s(X) -> n__s(X) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (68) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (69) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATLIST(n__cons(n__cons(x0, x1), y1)) -> U51^1(isNat(cons(activate(x0), x1)), activate(y1)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(U51^1(x_1, x_2)) = [[0]] + [[0, 0]] * x_1 + [[1, 0]] * x_2 >>> <<< POL(tt) = [[0], [0]] >>> <<< POL(n__cons(x_1, x_2)) = [[0], [1]] + [[0, 1], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 >>> <<< POL(ISNATLIST(x_1)) = [[0]] + [[1, 0]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[0], [1]] + [[0, 1], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 >>> <<< POL(activate(x_1)) = [[0], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< POL(isNat(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(n__zeros) = [[0], [1]] >>> <<< POL(0) = [[0], [0]] >>> <<< POL(n__0) = [[0], [0]] >>> <<< POL(zeros) = [[0], [1]] >>> <<< POL(n__take(x_1, x_2)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [1, 1]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [1, 1]] * x_2 >>> <<< POL(n__length(x_1)) = [[1], [1]] + [[0, 1], [0, 1]] * x_1 >>> <<< POL(length(x_1)) = [[1], [1]] + [[0, 1], [0, 1]] * x_1 >>> <<< POL(n__s(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(s(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(n__nil) = [[0], [0]] >>> <<< POL(nil) = [[0], [0]] >>> <<< POL(U11(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(isNatList(x_1)) = [[1], [1]] + [[0, 0], [1, 0]] * x_1 >>> <<< POL(U21(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U71(x_1, x_2, x_3)) = [[1], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 + [[0, 0], [0, 0]] * x_3 >>> <<< POL(U51(x_1, x_2)) = [[1], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U61(x_1, x_2)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U62(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[1], [1]] + [[0, 0], [1, 1]] * x_1 >>> <<< POL(U31(x_1)) = [[1], [1]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U41(x_1, x_2)) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U42(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U52(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U72(x_1, x_2)) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U81(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U91(x_1, x_2, x_3, x_4)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 + [[0, 0], [0, 0]] * x_3 + [[0, 1], [0, 1]] * x_4 >>> <<< POL(U92(x_1, x_2, x_3, x_4)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 + [[0, 0], [0, 0]] * x_3 + [[0, 1], [0, 0]] * x_4 >>> <<< POL(U93(x_1, x_2, x_3, x_4)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 + [[0, 0], [0, 0]] * x_3 + [[0, 1], [0, 0]] * x_4 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X cons(X1, X2) -> n__cons(X1, X2) isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) 0 -> n__0 take(X1, X2) -> n__take(X1, X2) length(nil) -> 0 length(X) -> n__length(X) s(X) -> n__s(X) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) take(0, IL) -> U81(isNatIList(IL)) U81(tt) -> nil take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: U51^1(tt, n__cons(x0, x1)) -> ISNATLIST(cons(activate(x0), x1)) U51^1(tt, x0) -> ISNATLIST(x0) ISNATLIST(n__cons(x0, y1)) -> U51^1(isNat(x0), activate(y1)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(0, n__zeros)) ISNATLIST(n__cons(n__0, y0)) -> U51^1(isNat(n__0), activate(y0)) U51^1(tt, n__zeros) -> ISNATLIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(V1, V2)) -> U41^1(isNat(activate(V1)), activate(V2)) U41^1(tt, V2) -> ISNATILIST(activate(V2)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (72) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(V1, V2)) -> U41^1(isNat(activate(V1)), activate(V2)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__zeros, y1)) -> U41^1(isNat(zeros), activate(y1)),ISNATILIST(n__cons(n__zeros, y1)) -> U41^1(isNat(zeros), activate(y1))) (ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)),ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1))) (ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)),ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1))) (ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)),ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1))) (ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)),ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1))) (ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)),ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1))) (ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)),ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1))) (ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)),ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1))) ---------------------------------------- (73) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, V2) -> ISNATILIST(activate(V2)) ISNATILIST(n__cons(n__zeros, y1)) -> U41^1(isNat(zeros), activate(y1)) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (74) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U41^1(tt, V2) -> ISNATILIST(activate(V2)) at position [0] we obtained the following new rules [LPAR04]: (U41^1(tt, n__zeros) -> ISNATILIST(zeros),U41^1(tt, n__zeros) -> ISNATILIST(zeros)) (U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))),U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1)))) (U41^1(tt, n__0) -> ISNATILIST(0),U41^1(tt, n__0) -> ISNATILIST(0)) (U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))),U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0)))) (U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))),U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0)))) (U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)),U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1))) (U41^1(tt, n__nil) -> ISNATILIST(nil),U41^1(tt, n__nil) -> ISNATILIST(nil)) (U41^1(tt, x0) -> ISNATILIST(x0),U41^1(tt, x0) -> ISNATILIST(x0)) ---------------------------------------- (75) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__zeros, y1)) -> U41^1(isNat(zeros), activate(y1)) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(zeros) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) U41^1(tt, n__0) -> ISNATILIST(0) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) U41^1(tt, n__nil) -> ISNATILIST(nil) U41^1(tt, x0) -> ISNATILIST(x0) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (76) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(n__zeros, y1)) -> U41^1(isNat(zeros), activate(y1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)),ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0))) (ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__zeros), activate(y0)),ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__zeros), activate(y0))) ---------------------------------------- (77) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(zeros) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) U41^1(tt, n__0) -> ISNATILIST(0) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) U41^1(tt, n__nil) -> ISNATILIST(nil) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__zeros), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (78) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (79) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__zeros) -> ISNATILIST(zeros) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) U41^1(tt, n__0) -> ISNATILIST(0) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, n__nil) -> ISNATILIST(nil) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (80) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U41^1(tt, n__zeros) -> ISNATILIST(zeros) at position [0] we obtained the following new rules [LPAR04]: (U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)),U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros))) (U41^1(tt, n__zeros) -> ISNATILIST(n__zeros),U41^1(tt, n__zeros) -> ISNATILIST(n__zeros)) ---------------------------------------- (81) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) U41^1(tt, n__0) -> ISNATILIST(0) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, n__nil) -> ISNATILIST(nil) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(n__zeros) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (82) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (83) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__0) -> ISNATILIST(0) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__nil) -> ISNATILIST(nil) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (84) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U41^1(tt, n__0) -> ISNATILIST(0) at position [0] we obtained the following new rules [LPAR04]: (U41^1(tt, n__0) -> ISNATILIST(n__0),U41^1(tt, n__0) -> ISNATILIST(n__0)) ---------------------------------------- (85) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__nil) -> ISNATILIST(nil) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) U41^1(tt, n__0) -> ISNATILIST(n__0) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (86) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (87) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__nil) -> ISNATILIST(nil) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (88) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(n__0, y1)) -> U41^1(isNat(0), activate(y1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)),ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0))) ---------------------------------------- (89) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__nil) -> ISNATILIST(nil) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (90) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U41^1(tt, n__nil) -> ISNATILIST(nil) at position [0] we obtained the following new rules [LPAR04]: (U41^1(tt, n__nil) -> ISNATILIST(n__nil),U41^1(tt, n__nil) -> ISNATILIST(n__nil)) ---------------------------------------- (91) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__nil) -> ISNATILIST(n__nil) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (92) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (93) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (94) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(n__nil, y1)) -> U41^1(isNat(nil), activate(y1)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__nil, y0)) -> U41^1(isNat(n__nil), activate(y0)),ISNATILIST(n__cons(n__nil, y0)) -> U41^1(isNat(n__nil), activate(y0))) ---------------------------------------- (95) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) ISNATILIST(n__cons(n__nil, y0)) -> U41^1(isNat(n__nil), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (96) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (97) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (98) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__cons(0, n__zeros)), activate(y0)),ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__cons(0, n__zeros)), activate(y0))) (ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(n__0, n__zeros)), activate(y0)),ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(n__0, n__zeros)), activate(y0))) ---------------------------------------- (99) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__cons(0, n__zeros)), activate(y0)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(n__0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (100) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (101) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(n__0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (102) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U41^1(tt, n__zeros) -> ISNATILIST(cons(0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)),U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros))) (U41^1(tt, n__zeros) -> ISNATILIST(cons(n__0, n__zeros)),U41^1(tt, n__zeros) -> ISNATILIST(cons(n__0, n__zeros))) ---------------------------------------- (103) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(n__0, n__zeros)), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (104) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(cons(n__0, n__zeros)), activate(y0)) at position [0] we obtained the following new rules [LPAR04]: (ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__cons(n__0, n__zeros)), activate(y0)),ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__cons(n__0, n__zeros)), activate(y0))) ---------------------------------------- (105) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(cons(n__0, n__zeros)) ISNATILIST(n__cons(n__zeros, y0)) -> U41^1(isNat(n__cons(n__0, n__zeros)), activate(y0)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (106) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (107) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (108) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule U41^1(tt, n__zeros) -> ISNATILIST(cons(n__0, n__zeros)) at position [0] we obtained the following new rules [LPAR04]: (U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)),U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros))) ---------------------------------------- (109) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (110) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. U41^1(tt, n__length(x0)) -> ISNATILIST(length(activate(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( U41^1_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} POL( ISNATILIST_1(x_1) ) = x_1 POL( U41_2(x_1, x_2) ) = 2 POL( U51_2(x_1, x_2) ) = x_2 + 1 POL( U61_2(x_1, x_2) ) = 1 POL( U71_3(x_1, ..., x_3) ) = 2 POL( U72_2(x_1, x_2) ) = 2 POL( U91_4(x_1, ..., x_4) ) = max{0, -2} POL( U92_4(x_1, ..., x_4) ) = max{0, -2} POL( U93_4(x_1, ..., x_4) ) = max{0, -2} POL( cons_2(x_1, x_2) ) = 2x_2 POL( length_1(x_1) ) = 2 POL( s_1(x_1) ) = max{0, -2} POL( take_2(x_1, x_2) ) = max{0, -2} POL( U11_1(x_1) ) = 1 POL( isNatList_1(x_1) ) = 2x_1 + 1 POL( U21_1(x_1) ) = x_1 POL( isNat_1(x_1) ) = 1 POL( U31_1(x_1) ) = 2 POL( U42_1(x_1) ) = 2 POL( isNatIList_1(x_1) ) = 2 POL( U52_1(x_1) ) = 1 POL( U62_1(x_1) ) = 1 POL( n__take_2(x_1, x_2) ) = 0 POL( activate_1(x_1) ) = x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__length_1(x_1) ) = 2 POL( n__s_1(x_1) ) = 0 POL( n__cons_2(x_1, x_2) ) = 2x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( U81_1(x_1) ) = max{0, -2} POL( tt ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) take(X1, X2) -> n__take(X1, X2) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) 0 -> n__0 isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (111) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (112) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(n__take(x0, x1), y1)) -> U41^1(isNat(take(activate(x0), activate(x1))), activate(y1)) ISNATILIST(n__cons(n__length(x0), y1)) -> U41^1(isNat(length(activate(x0))), activate(y1)) ISNATILIST(n__cons(n__s(x0), y1)) -> U41^1(isNat(s(activate(x0))), activate(y1)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( U41^1_2(x_1, x_2) ) = 2x_2 POL( ISNATILIST_1(x_1) ) = 2x_1 POL( U41_2(x_1, x_2) ) = max{0, -2} POL( U51_2(x_1, x_2) ) = max{0, -2} POL( U61_2(x_1, x_2) ) = max{0, -2} POL( U71_3(x_1, ..., x_3) ) = 1 POL( U72_2(x_1, x_2) ) = 1 POL( U91_4(x_1, ..., x_4) ) = x_2 + x_4 + 2 POL( U92_4(x_1, ..., x_4) ) = x_2 + x_4 + 2 POL( U93_4(x_1, ..., x_4) ) = x_2 + x_4 + 2 POL( cons_2(x_1, x_2) ) = x_1 + x_2 POL( length_1(x_1) ) = 1 POL( s_1(x_1) ) = 1 POL( take_2(x_1, x_2) ) = x_2 + 2 POL( U11_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = 1 POL( U21_1(x_1) ) = max{0, -2} POL( isNat_1(x_1) ) = max{0, -2} POL( U31_1(x_1) ) = max{0, -2} POL( U42_1(x_1) ) = max{0, -2} POL( isNatIList_1(x_1) ) = max{0, -2} POL( U52_1(x_1) ) = max{0, -2} POL( U62_1(x_1) ) = max{0, -2} POL( n__take_2(x_1, x_2) ) = x_2 + 2 POL( activate_1(x_1) ) = x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__length_1(x_1) ) = 1 POL( n__s_1(x_1) ) = 1 POL( n__cons_2(x_1, x_2) ) = x_1 + x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( U81_1(x_1) ) = max{0, -2} POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) take(X1, X2) -> n__take(X1, X2) isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) 0 -> n__0 isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (113) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (114) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. U41^1(tt, n__s(x0)) -> ISNATILIST(s(activate(x0))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( U41^1_2(x_1, x_2) ) = 2x_2 POL( ISNATILIST_1(x_1) ) = x_1 POL( U41_2(x_1, x_2) ) = max{0, -2} POL( U51_2(x_1, x_2) ) = max{0, -2} POL( U61_2(x_1, x_2) ) = max{0, -2} POL( U71_3(x_1, ..., x_3) ) = x_2 + 1 POL( U72_2(x_1, x_2) ) = 1 POL( U91_4(x_1, ..., x_4) ) = max{0, -2} POL( U92_4(x_1, ..., x_4) ) = max{0, -2} POL( U93_4(x_1, ..., x_4) ) = max{0, -2} POL( cons_2(x_1, x_2) ) = 2x_2 POL( length_1(x_1) ) = x_1 + 2 POL( s_1(x_1) ) = 1 POL( take_2(x_1, x_2) ) = 0 POL( U11_1(x_1) ) = max{0, -2} POL( isNatList_1(x_1) ) = 2 POL( U21_1(x_1) ) = max{0, -2} POL( isNat_1(x_1) ) = max{0, -2} POL( U31_1(x_1) ) = max{0, -2} POL( U42_1(x_1) ) = max{0, -2} POL( isNatIList_1(x_1) ) = 1 POL( U52_1(x_1) ) = max{0, -2} POL( U62_1(x_1) ) = 0 POL( n__take_2(x_1, x_2) ) = max{0, -2} POL( activate_1(x_1) ) = x_1 POL( n__zeros ) = 0 POL( zeros ) = 0 POL( n__0 ) = 0 POL( 0 ) = 0 POL( n__length_1(x_1) ) = x_1 + 2 POL( n__s_1(x_1) ) = 1 POL( n__cons_2(x_1, x_2) ) = 2x_2 POL( n__nil ) = 0 POL( nil ) = 0 POL( U81_1(x_1) ) = max{0, -2} POL( tt ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) take(X1, X2) -> n__take(X1, X2) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) 0 -> n__0 length(nil) -> 0 length(X) -> n__length(X) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (115) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (116) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. U41^1(tt, n__take(x0, x1)) -> ISNATILIST(take(activate(x0), activate(x1))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(U41^1(x_1, x_2)) = [[2A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(tt) = [[2A]] >>> <<< POL(n__take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(ISNATILIST(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(take(x_1, x_2)) = [[2A]] + [[0A]] * x_1 + [[0A]] * x_2 >>> <<< POL(activate(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(n__cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(isNat(x_1)) = [[0A]] + [[0A]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[-I]] + [[0A]] * x_1 + [[1A]] * x_2 >>> <<< POL(n__0) = [[0A]] >>> <<< POL(n__zeros) = [[0A]] >>> <<< POL(0) = [[0A]] >>> <<< POL(zeros) = [[1A]] >>> <<< POL(n__length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(length(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(n__s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(s(x_1)) = [[3A]] + [[1A]] * x_1 >>> <<< POL(n__nil) = [[2A]] >>> <<< POL(nil) = [[2A]] >>> <<< POL(U81(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[2A]] + [[0A]] * x_1 >>> <<< POL(U91(x_1, x_2, x_3, x_4)) = [[3A]] + [[0A]] * x_1 + [[1A]] * x_2 + [[1A]] * x_3 + [[0A]] * x_4 >>> <<< POL(U11(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(isNatList(x_1)) = [[1A]] + [[0A]] * x_1 >>> <<< POL(U21(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U71(x_1, x_2, x_3)) = [[-I]] + [[1A]] * x_1 + [[1A]] * x_2 + [[0A]] * x_3 >>> <<< POL(U51(x_1, x_2)) = [[1A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(U61(x_1, x_2)) = [[2A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(U62(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U31(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U41(x_1, x_2)) = [[2A]] + [[-I]] * x_1 + [[0A]] * x_2 >>> <<< POL(U42(x_1)) = [[2A]] + [[-I]] * x_1 >>> <<< POL(U52(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(U72(x_1, x_2)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 >>> <<< POL(U92(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[1A]] * x_3 + [[0A]] * x_4 >>> <<< POL(U93(x_1, x_2, x_3, x_4)) = [[3A]] + [[-I]] * x_1 + [[1A]] * x_2 + [[1A]] * x_3 + [[0A]] * x_4 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) take(X1, X2) -> n__take(X1, X2) cons(X1, X2) -> n__cons(X1, X2) isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) 0 -> n__0 length(nil) -> 0 length(X) -> n__length(X) s(X) -> n__s(X) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) isNatIList(n__zeros) -> tt U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (117) Obligation: Q DP problem: The TRS P consists of the following rules: ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (118) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ISNATILIST(n__cons(n__cons(x0, x1), y1)) -> U41^1(isNat(cons(activate(x0), x1)), activate(y1)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(ISNATILIST(x_1)) = [[0]] + [[1, 0]] * x_1 >>> <<< POL(n__cons(x_1, x_2)) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 >>> <<< POL(U41^1(x_1, x_2)) = [[0]] + [[0, 0]] * x_1 + [[1, 0]] * x_2 >>> <<< POL(isNat(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(cons(x_1, x_2)) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 >>> <<< POL(activate(x_1)) = [[0], [0]] + [[1, 0], [0, 1]] * x_1 >>> <<< POL(tt) = [[0], [0]] >>> <<< POL(n__0) = [[0], [0]] >>> <<< POL(n__zeros) = [[0], [1]] >>> <<< POL(0) = [[0], [0]] >>> <<< POL(zeros) = [[0], [1]] >>> <<< POL(n__take(x_1, x_2)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 >>> <<< POL(take(x_1, x_2)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 >>> <<< POL(n__length(x_1)) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 >>> <<< POL(length(x_1)) = [[0], [1]] + [[1, 1], [0, 0]] * x_1 >>> <<< POL(n__s(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(s(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(n__nil) = [[0], [0]] >>> <<< POL(nil) = [[0], [0]] >>> <<< POL(U11(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(isNatList(x_1)) = [[1], [1]] + [[1, 0], [1, 1]] * x_1 >>> <<< POL(U21(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U71(x_1, x_2, x_3)) = [[1], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 + [[1, 1], [0, 0]] * x_3 >>> <<< POL(U51(x_1, x_2)) = [[1], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U61(x_1, x_2)) = [[1], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U62(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(isNatIList(x_1)) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U31(x_1)) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U41(x_1, x_2)) = [[1], [0]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U42(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U52(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U72(x_1, x_2)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[0, 0], [0, 0]] * x_2 >>> <<< POL(U81(x_1)) = [[0], [0]] + [[0, 0], [0, 0]] * x_1 >>> <<< POL(U91(x_1, x_2, x_3, x_4)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 + [[0, 0], [0, 0]] * x_3 + [[1, 1], [0, 0]] * x_4 >>> <<< POL(U92(x_1, x_2, x_3, x_4)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 + [[0, 0], [0, 0]] * x_3 + [[1, 1], [0, 0]] * x_4 >>> <<< POL(U93(x_1, x_2, x_3, x_4)) = [[0], [1]] + [[0, 0], [0, 0]] * x_1 + [[1, 0], [0, 0]] * x_2 + [[0, 0], [0, 0]] * x_3 + [[1, 1], [0, 0]] * x_4 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X cons(X1, X2) -> n__cons(X1, X2) isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) 0 -> n__0 take(X1, X2) -> n__take(X1, X2) length(nil) -> 0 length(X) -> n__length(X) s(X) -> n__s(X) length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) U11(tt) -> tt isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) U21(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt isNatIList(V) -> U31(isNatList(activate(V))) U31(tt) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) take(0, IL) -> U81(isNatIList(IL)) U81(tt) -> nil take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) zeros -> cons(0, n__zeros) zeros -> n__zeros nil -> n__nil ---------------------------------------- (119) Obligation: Q DP problem: The TRS P consists of the following rules: U41^1(tt, n__cons(x0, x1)) -> ISNATILIST(cons(activate(x0), x1)) ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) U41^1(tt, x0) -> ISNATILIST(x0) ISNATILIST(n__cons(n__0, y0)) -> U41^1(isNat(n__0), activate(y0)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(0, n__zeros)) U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) The TRS R consists of the following rules: zeros -> cons(0, n__zeros) U11(tt) -> tt U21(tt) -> tt U31(tt) -> tt U41(tt, V2) -> U42(isNatIList(activate(V2))) U42(tt) -> tt U51(tt, V2) -> U52(isNatList(activate(V2))) U52(tt) -> tt U61(tt, V2) -> U62(isNatIList(activate(V2))) U62(tt) -> tt U71(tt, L, N) -> U72(isNat(activate(N)), activate(L)) U72(tt, L) -> s(length(activate(L))) U81(tt) -> nil U91(tt, IL, M, N) -> U92(isNat(activate(M)), activate(IL), activate(M), activate(N)) U92(tt, IL, M, N) -> U93(isNat(activate(N)), activate(IL), activate(M), activate(N)) U93(tt, IL, M, N) -> cons(activate(N), n__take(activate(M), activate(IL))) isNat(n__0) -> tt isNat(n__length(V1)) -> U11(isNatList(activate(V1))) isNat(n__s(V1)) -> U21(isNat(activate(V1))) isNatIList(V) -> U31(isNatList(activate(V))) isNatIList(n__zeros) -> tt isNatIList(n__cons(V1, V2)) -> U41(isNat(activate(V1)), activate(V2)) isNatList(n__nil) -> tt isNatList(n__cons(V1, V2)) -> U51(isNat(activate(V1)), activate(V2)) isNatList(n__take(V1, V2)) -> U61(isNat(activate(V1)), activate(V2)) length(nil) -> 0 length(cons(N, L)) -> U71(isNatList(activate(L)), activate(L), N) take(0, IL) -> U81(isNatIList(IL)) take(s(M), cons(N, IL)) -> U91(isNatIList(activate(IL)), activate(IL), M, N) zeros -> n__zeros take(X1, X2) -> n__take(X1, X2) 0 -> n__0 length(X) -> n__length(X) s(X) -> n__s(X) cons(X1, X2) -> n__cons(X1, X2) nil -> n__nil activate(n__zeros) -> zeros activate(n__take(X1, X2)) -> take(activate(X1), activate(X2)) activate(n__0) -> 0 activate(n__length(X)) -> length(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__cons(X1, X2)) -> cons(activate(X1), X2) activate(n__nil) -> nil activate(X) -> X Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (120) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = U41^1(isNat(n__0), activate(n__zeros)) evaluates to t =U41^1(isNat(n__0), activate(n__zeros)) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [ ] -------------------------------------------------------------------------------- Rewriting sequence U41^1(isNat(n__0), activate(n__zeros)) -> U41^1(isNat(n__0), n__zeros) with rule activate(X) -> X at position [1] and matcher [X / n__zeros] U41^1(isNat(n__0), n__zeros) -> U41^1(tt, n__zeros) with rule isNat(n__0) -> tt at position [0] and matcher [ ] U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) with rule U41^1(tt, n__zeros) -> ISNATILIST(n__cons(n__0, n__zeros)) at position [] and matcher [ ] ISNATILIST(n__cons(n__0, n__zeros)) -> U41^1(isNat(n__0), activate(n__zeros)) with rule ISNATILIST(n__cons(x0, y1)) -> U41^1(isNat(x0), activate(y1)) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (121) NO