/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S N:S X:S X1:S X2:S Y:S Z:S) (RULES activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ) Problem 1: Dependency Pairs Processor: -> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X2:S) ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__s(X:S)) -> S(activate(X:S)) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> TERMS(activate(X:S)) ADD(s(X:S),Y:S) -> ADD(X:S,Y:S) ADD(s(X:S),Y:S) -> S(add(X:S,Y:S)) DBL(s(X:S)) -> DBL(X:S) DBL(s(X:S)) -> S(dbl(X:S)) DBL(s(X:S)) -> S(s(dbl(X:S))) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) HALF(s(s(X:S))) -> HALF(X:S) HALF(s(s(X:S))) -> S(half(X:S)) SQR(s(X:S)) -> ADD(sqr(X:S),dbl(X:S)) SQR(s(X:S)) -> DBL(X:S) SQR(s(X:S)) -> S(add(sqr(X:S),dbl(X:S))) SQR(s(X:S)) -> SQR(X:S) TERMS(N:S) -> SQR(N:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) Problem 1: SCC Processor: -> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X2:S) ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__s(X:S)) -> S(activate(X:S)) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> TERMS(activate(X:S)) ADD(s(X:S),Y:S) -> ADD(X:S,Y:S) ADD(s(X:S),Y:S) -> S(add(X:S,Y:S)) DBL(s(X:S)) -> DBL(X:S) DBL(s(X:S)) -> S(dbl(X:S)) DBL(s(X:S)) -> S(s(dbl(X:S))) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) HALF(s(s(X:S))) -> HALF(X:S) HALF(s(s(X:S))) -> S(half(X:S)) SQR(s(X:S)) -> ADD(sqr(X:S),dbl(X:S)) SQR(s(X:S)) -> DBL(X:S) SQR(s(X:S)) -> S(add(sqr(X:S),dbl(X:S))) SQR(s(X:S)) -> SQR(X:S) TERMS(N:S) -> SQR(N:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: HALF(s(s(X:S))) -> HALF(X:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->->Cycle: ->->-> Pairs: DBL(s(X:S)) -> DBL(X:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->->Cycle: ->->-> Pairs: ADD(s(X:S),Y:S) -> ADD(X:S,Y:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->->Cycle: ->->-> Pairs: SQR(s(X:S)) -> SQR(X:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X2:S) ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) The problem is decomposed in 5 subproblems. Problem 1.1: Subterm Processor: -> Pairs: HALF(s(s(X:S))) -> HALF(X:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Projection: pi(HALF) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: DBL(s(X:S)) -> DBL(X:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Projection: pi(DBL) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: ADD(s(X:S),Y:S) -> ADD(X:S,Y:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Projection: pi(ADD) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Subterm Processor: -> Pairs: SQR(s(X:S)) -> SQR(X:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Projection: pi(SQR) = 1 Problem 1.4: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.5: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X1:S) ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X2:S) ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) -> Usable rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 2.X2 + 1 [dbl](X) = 0 [first](X1,X2) = 2.X1 + X2 + 2 [s](X) = X [sqr](X) = 2 [terms](X) = 2.X + 2 [0] = 0 [cons](X1,X2) = X2 [n__first](X1,X2) = 2.X1 + X2 + 2 [n__s](X) = X [n__terms](X) = 2.X + 2 [nil] = 2 [recip](X) = 0 [ACTIVATE](X) = 2.X + 2 [FIRST](X1,X2) = X1 + 2.X2 + 2 Problem 1.5: SCC Processor: -> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X2:S) ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X2:S) ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) Problem 1.5: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> ACTIVATE(X2:S) ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) -> Usable rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = 2.X2 [dbl](X) = X [first](X1,X2) = 2.X2 + 2 [s](X) = X [sqr](X) = 2.X [terms](X) = 2.X + 2 [0] = 2 [cons](X1,X2) = X2 [n__first](X1,X2) = 2.X2 + 2 [n__s](X) = X [n__terms](X) = 2.X + 2 [nil] = 2 [recip](X) = 2 [ACTIVATE](X) = 2.X + 2 [FIRST](X1,X2) = 2.X2 + 2 Problem 1.5: SCC Processor: -> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) Problem 1.5: Reduction Pair Processor: -> Pairs: ACTIVATE(n__first(X1:S,X2:S)) -> FIRST(activate(X1:S),activate(X2:S)) ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) -> Usable rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [activate](X) = X [add](X1,X2) = X2 [dbl](X) = 2.X [first](X1,X2) = 2.X1 + 2.X2 + 2 [s](X) = X [sqr](X) = 2.X [terms](X) = 2.X + 1 [0] = 1 [cons](X1,X2) = X2 [n__first](X1,X2) = 2.X1 + 2.X2 + 2 [n__s](X) = X [n__terms](X) = 2.X + 1 [nil] = 2 [recip](X) = X + 2 [ACTIVATE](X) = 2.X + 1 [FIRST](X1,X2) = 2.X2 + 2 Problem 1.5: SCC Processor: -> Pairs: ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) FIRST(s(X:S),cons(Y:S,Z:S)) -> ACTIVATE(Z:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) ->->-> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) Problem 1.5: Subterm Processor: -> Pairs: ACTIVATE(n__s(X:S)) -> ACTIVATE(X:S) ACTIVATE(n__terms(X:S)) -> ACTIVATE(X:S) -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Projection: pi(ACTIVATE) = 1 Problem 1.5: SCC Processor: -> Pairs: Empty -> Rules: activate(n__first(X1:S,X2:S)) -> first(activate(X1:S),activate(X2:S)) activate(n__s(X:S)) -> s(activate(X:S)) activate(n__terms(X:S)) -> terms(activate(X:S)) activate(X:S) -> X:S add(s(X:S),Y:S) -> s(add(X:S,Y:S)) add(0,X:S) -> X:S dbl(s(X:S)) -> s(s(dbl(X:S))) dbl(0) -> 0 first(s(X:S),cons(Y:S,Z:S)) -> cons(Y:S,n__first(X:S,activate(Z:S))) first(0,X:S) -> nil first(X1:S,X2:S) -> n__first(X1:S,X2:S) half(dbl(X:S)) -> X:S half(s(s(X:S))) -> s(half(X:S)) half(s(0)) -> 0 half(0) -> 0 s(X:S) -> n__s(X:S) sqr(s(X:S)) -> s(add(sqr(X:S),dbl(X:S))) sqr(0) -> 0 terms(N:S) -> cons(recip(sqr(N:S)),n__terms(n__s(N:S))) terms(X:S) -> n__terms(X:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite.