/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 12 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) QDPOrderProof [EQUIVALENT, 29 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 44 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 20 ms] (46) QDP (47) QDPOrderProof [EQUIVALENT, 7 ms] (48) QDP (49) QDPOrderProof [EQUIVALENT, 0 ms] (50) QDP (51) UsableRulesProof [EQUIVALENT, 0 ms] (52) QDP (53) QDPSizeChangeProof [EQUIVALENT, 0 ms] (54) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(and(true, X)) -> MARK(X) ACTIVE(and(false, Y)) -> MARK(false) ACTIVE(if(true, X, Y)) -> MARK(X) ACTIVE(if(false, X, Y)) -> MARK(Y) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(add(s(X), Y)) -> S(add(X, Y)) ACTIVE(add(s(X), Y)) -> ADD(X, Y) ACTIVE(first(0, X)) -> MARK(nil) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) ACTIVE(first(s(X), cons(Y, Z))) -> CONS(Y, first(X, Z)) ACTIVE(first(s(X), cons(Y, Z))) -> FIRST(X, Z) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) MARK(and(X1, X2)) -> ACTIVE(and(mark(X1), X2)) MARK(and(X1, X2)) -> AND(mark(X1), X2) MARK(and(X1, X2)) -> MARK(X1) MARK(true) -> ACTIVE(true) MARK(false) -> ACTIVE(false) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> IF(mark(X1), X2, X3) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), X2)) MARK(add(X1, X2)) -> ADD(mark(X1), X2) MARK(add(X1, X2)) -> MARK(X1) MARK(0) -> ACTIVE(0) MARK(s(X)) -> ACTIVE(s(X)) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> FIRST(mark(X1), mark(X2)) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(nil) -> ACTIVE(nil) MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) MARK(from(X)) -> ACTIVE(from(X)) AND(mark(X1), X2) -> AND(X1, X2) AND(X1, mark(X2)) -> AND(X1, X2) AND(active(X1), X2) -> AND(X1, X2) AND(X1, active(X2)) -> AND(X1, X2) IF(mark(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, mark(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) IF(active(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, active(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, active(X3)) -> IF(X1, X2, X3) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 17 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: FIRST(X1, mark(X2)) -> FIRST(X1, X2) FIRST(mark(X1), X2) -> FIRST(X1, X2) FIRST(active(X1), X2) -> FIRST(X1, X2) FIRST(X1, active(X2)) -> FIRST(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FIRST(X1, mark(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *FIRST(mark(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(active(X1), X2) -> FIRST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FIRST(X1, active(X2)) -> FIRST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(X1, mark(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *ADD(mark(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(active(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(X1, active(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: IF(X1, mark(X2), X3) -> IF(X1, X2, X3) IF(mark(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) IF(active(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, active(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, active(X3)) -> IF(X1, X2, X3) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: IF(X1, mark(X2), X3) -> IF(X1, X2, X3) IF(mark(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) IF(active(X1), X2, X3) -> IF(X1, X2, X3) IF(X1, active(X2), X3) -> IF(X1, X2, X3) IF(X1, X2, active(X3)) -> IF(X1, X2, X3) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *IF(X1, mark(X2), X3) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *IF(mark(X1), X2, X3) -> IF(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *IF(X1, X2, mark(X3)) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 *IF(active(X1), X2, X3) -> IF(X1, X2, X3) The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3 *IF(X1, active(X2), X3) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3 *IF(X1, X2, active(X3)) -> IF(X1, X2, X3) The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: AND(X1, mark(X2)) -> AND(X1, X2) AND(mark(X1), X2) -> AND(X1, X2) AND(active(X1), X2) -> AND(X1, X2) AND(X1, active(X2)) -> AND(X1, X2) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: AND(X1, mark(X2)) -> AND(X1, X2) AND(mark(X1), X2) -> AND(X1, X2) AND(active(X1), X2) -> AND(X1, X2) AND(X1, active(X2)) -> AND(X1, X2) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *AND(X1, mark(X2)) -> AND(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *AND(mark(X1), X2) -> AND(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *AND(active(X1), X2) -> AND(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *AND(X1, active(X2)) -> AND(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(and(X1, X2)) -> ACTIVE(and(mark(X1), X2)) ACTIVE(and(true, X)) -> MARK(X) MARK(and(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) ACTIVE(if(true, X, Y)) -> MARK(X) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), X2)) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(add(X1, X2)) -> MARK(X1) MARK(s(X)) -> ACTIVE(s(X)) ACTIVE(add(0, X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(from(X)) -> ACTIVE(from(X)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(s(X)) -> ACTIVE(s(X)) MARK(cons(X1, X2)) -> ACTIVE(cons(X1, X2)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 1 POL(active(x_1)) = 0 POL(add(x_1, x_2)) = 1 POL(and(x_1, x_2)) = 1 POL(cons(x_1, x_2)) = 0 POL(false) = 0 POL(first(x_1, x_2)) = 1 POL(from(x_1)) = 1 POL(if(x_1, x_2, x_3)) = 1 POL(mark(x_1)) = 0 POL(nil) = 0 POL(s(x_1)) = 0 POL(true) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: and(X1, mark(X2)) -> and(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(and(X1, X2)) -> ACTIVE(and(mark(X1), X2)) ACTIVE(and(true, X)) -> MARK(X) MARK(and(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) ACTIVE(if(true, X, Y)) -> MARK(X) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), X2)) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(add(X1, X2)) -> MARK(X1) ACTIVE(add(0, X)) -> MARK(X) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(from(X)) -> ACTIVE(from(X)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(and(true, X)) -> MARK(X) ACTIVE(if(true, X, Y)) -> MARK(X) MARK(add(X1, X2)) -> MARK(X1) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 1 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(add(x_1, x_2)) = 1 + x_1 + x_2 POL(and(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = 0 POL(false) = 0 POL(first(x_1, x_2)) = x_1 + x_2 POL(from(x_1)) = 0 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(s(x_1)) = 0 POL(true) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(and(X1, X2)) -> active(and(mark(X1), X2)) active(and(true, X)) -> mark(X) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) active(if(true, X, Y)) -> mark(X) mark(add(X1, X2)) -> active(add(mark(X1), X2)) active(if(false, X, Y)) -> mark(Y) mark(s(X)) -> active(s(X)) active(add(0, X)) -> mark(X) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) active(add(s(X), Y)) -> mark(s(add(X, Y))) mark(cons(X1, X2)) -> active(cons(X1, X2)) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(from(X)) -> active(from(X)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(true) -> active(true) mark(false) -> active(false) mark(0) -> active(0) mark(nil) -> active(nil) and(X1, mark(X2)) -> and(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) s(active(X)) -> s(X) s(mark(X)) -> s(X) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) active(and(false, Y)) -> mark(false) active(first(0, X)) -> mark(nil) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(and(X1, X2)) -> ACTIVE(and(mark(X1), X2)) MARK(and(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), X2)) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(from(X)) -> ACTIVE(from(X)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(and(X1, X2)) -> ACTIVE(and(mark(X1), X2)) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), X2)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = 1 POL(active(x_1)) = 0 POL(add(x_1, x_2)) = 0 POL(and(x_1, x_2)) = 0 POL(cons(x_1, x_2)) = x_1 POL(false) = 0 POL(first(x_1, x_2)) = 1 POL(from(x_1)) = 1 POL(if(x_1, x_2, x_3)) = 1 POL(mark(x_1)) = 0 POL(nil) = 0 POL(s(x_1)) = 0 POL(true) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: and(X1, mark(X2)) -> and(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(and(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) ACTIVE(if(false, X, Y)) -> MARK(Y) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(from(X)) -> ACTIVE(from(X)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(if(false, X, Y)) -> MARK(Y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(ACTIVE(x_1)) = x_1 POL(MARK(x_1)) = x_1 POL(active(x_1)) = x_1 POL(add(x_1, x_2)) = x_2 POL(and(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = 0 POL(false) = 1 POL(first(x_1, x_2)) = x_1 + x_2 POL(from(x_1)) = 0 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(mark(x_1)) = x_1 POL(nil) = 0 POL(s(x_1)) = 0 POL(true) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(and(X1, X2)) -> active(and(mark(X1), X2)) active(and(true, X)) -> mark(X) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) active(if(true, X, Y)) -> mark(X) mark(add(X1, X2)) -> active(add(mark(X1), X2)) active(if(false, X, Y)) -> mark(Y) mark(s(X)) -> active(s(X)) active(add(0, X)) -> mark(X) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) active(add(s(X), Y)) -> mark(s(add(X, Y))) mark(cons(X1, X2)) -> active(cons(X1, X2)) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) mark(from(X)) -> active(from(X)) active(from(X)) -> mark(cons(X, from(s(X)))) mark(true) -> active(true) mark(false) -> active(false) mark(0) -> active(0) mark(nil) -> active(nil) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) first(X1, mark(X2)) -> first(X1, X2) first(mark(X1), X2) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) s(active(X)) -> s(X) s(mark(X)) -> s(X) and(X1, mark(X2)) -> and(X1, X2) and(mark(X1), X2) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) active(and(false, Y)) -> mark(false) active(first(0, X)) -> mark(nil) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(and(X1, X2)) -> MARK(X1) MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(from(X)) -> ACTIVE(from(X)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(if(X1, X2, X3)) -> ACTIVE(if(mark(X1), X2, X3)) MARK(if(X1, X2, X3)) -> MARK(X1) MARK(first(X1, X2)) -> ACTIVE(first(mark(X1), mark(X2))) MARK(first(X1, X2)) -> MARK(X1) MARK(first(X1, X2)) -> MARK(X2) ACTIVE(first(s(X), cons(Y, Z))) -> MARK(cons(Y, first(X, Z))) MARK(from(X)) -> ACTIVE(from(X)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 and(x1, x2) = x1 if(x1, x2, x3) = if(x1) ACTIVE(x1) = ACTIVE first(x1, x2) = first(x1, x2) cons(x1, x2) = cons from(x1) = from Knuth-Bendix order [KBO] with precedence:ACTIVE > cons and weight map: ACTIVE=1 cons=1 first_2=1 from=2 if_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(and(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(and(true, X)) -> mark(X) active(and(false, Y)) -> mark(false) active(if(true, X, Y)) -> mark(X) active(if(false, X, Y)) -> mark(Y) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(first(0, X)) -> mark(nil) active(first(s(X), cons(Y, Z))) -> mark(cons(Y, first(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) mark(and(X1, X2)) -> active(and(mark(X1), X2)) mark(true) -> active(true) mark(false) -> active(false) mark(if(X1, X2, X3)) -> active(if(mark(X1), X2, X3)) mark(add(X1, X2)) -> active(add(mark(X1), X2)) mark(0) -> active(0) mark(s(X)) -> active(s(X)) mark(first(X1, X2)) -> active(first(mark(X1), mark(X2))) mark(nil) -> active(nil) mark(cons(X1, X2)) -> active(cons(X1, X2)) mark(from(X)) -> active(from(X)) and(mark(X1), X2) -> and(X1, X2) and(X1, mark(X2)) -> and(X1, X2) and(active(X1), X2) -> and(X1, X2) and(X1, active(X2)) -> and(X1, X2) if(mark(X1), X2, X3) -> if(X1, X2, X3) if(X1, mark(X2), X3) -> if(X1, X2, X3) if(X1, X2, mark(X3)) -> if(X1, X2, X3) if(active(X1), X2, X3) -> if(X1, X2, X3) if(X1, active(X2), X3) -> if(X1, X2, X3) if(X1, X2, active(X3)) -> if(X1, X2, X3) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1), X2) -> first(X1, X2) first(X1, mark(X2)) -> first(X1, X2) first(active(X1), X2) -> first(X1, X2) first(X1, active(X2)) -> first(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(and(X1, X2)) -> MARK(X1) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(and(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (54) YES