/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ) Problem 1: Dependency Pairs Processor: -> Pairs: CHECK(rest(x:S)) -> CHECK(x:S) CHECK(rest(x:S)) -> REST(check(x:S)) CHECK(cons(x:S,y:S)) -> CHECK(x:S) CHECK(cons(x:S,y:S)) -> CHECK(y:S) CHECK(sent(x:S)) -> CHECK(x:S) TOP(sent(x:S)) -> CHECK(rest(x:S)) TOP(sent(x:S)) -> REST(x:S) TOP(sent(x:S)) -> TOP(check(rest(x:S))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) Problem 1: SCC Processor: -> Pairs: CHECK(rest(x:S)) -> CHECK(x:S) CHECK(rest(x:S)) -> REST(check(x:S)) CHECK(cons(x:S,y:S)) -> CHECK(x:S) CHECK(cons(x:S,y:S)) -> CHECK(y:S) CHECK(sent(x:S)) -> CHECK(x:S) TOP(sent(x:S)) -> CHECK(rest(x:S)) TOP(sent(x:S)) -> REST(x:S) TOP(sent(x:S)) -> TOP(check(rest(x:S))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: CHECK(rest(x:S)) -> CHECK(x:S) CHECK(cons(x:S,y:S)) -> CHECK(x:S) CHECK(cons(x:S,y:S)) -> CHECK(y:S) CHECK(sent(x:S)) -> CHECK(x:S) ->->-> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->->Cycle: ->->-> Pairs: TOP(sent(x:S)) -> TOP(check(rest(x:S))) ->->-> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: CHECK(rest(x:S)) -> CHECK(x:S) CHECK(cons(x:S,y:S)) -> CHECK(x:S) CHECK(cons(x:S,y:S)) -> CHECK(y:S) CHECK(sent(x:S)) -> CHECK(x:S) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Projection: pi(CHECK) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Narrowing Processor: -> Pairs: TOP(sent(x:S)) -> TOP(check(rest(x:S))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Narrowed Pairs: ->->Original Pair: TOP(sent(x:S)) -> TOP(check(rest(x:S))) ->-> Narrowed pairs: TOP(sent(cons(x:S,y:S))) -> TOP(check(sent(y:S))) TOP(sent(nil)) -> TOP(check(sent(nil))) TOP(sent(x:S)) -> TOP(rest(check(x:S))) Problem 1.2: SCC Processor: -> Pairs: TOP(sent(cons(x:S,y:S))) -> TOP(check(sent(y:S))) TOP(sent(nil)) -> TOP(check(sent(nil))) TOP(sent(x:S)) -> TOP(rest(check(x:S))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: TOP(sent(cons(x:S,y:S))) -> TOP(check(sent(y:S))) TOP(sent(nil)) -> TOP(check(sent(nil))) TOP(sent(x:S)) -> TOP(rest(check(x:S))) ->->-> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) Problem 1.2: Reduction Pair Processor: -> Pairs: TOP(sent(cons(x:S,y:S))) -> TOP(check(sent(y:S))) TOP(sent(nil)) -> TOP(check(sent(nil))) TOP(sent(x:S)) -> TOP(rest(check(x:S))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) -> Usable rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [check](X) = X [rest](X) = 2.X [cons](X1,X2) = X1 + 2.X2 + 1 [nil] = 2 [sent](X) = 2.X [TOP](X) = 2.X Problem 1.2: SCC Processor: -> Pairs: TOP(sent(nil)) -> TOP(check(sent(nil))) TOP(sent(x:S)) -> TOP(rest(check(x:S))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: TOP(sent(nil)) -> TOP(check(sent(nil))) TOP(sent(x:S)) -> TOP(rest(check(x:S))) ->->-> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) Problem 1.2: Reduction Pair Processor: -> Pairs: TOP(sent(nil)) -> TOP(check(sent(nil))) TOP(sent(x:S)) -> TOP(rest(check(x:S))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) -> Usable rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 2 ->Bound: 1 ->Interpretation: [check](X) = [1 0;0 0].X [rest](X) = [1 1;0 0].X [cons](X1,X2) = [1 1;0 0].X1 + [1 1;0 0].X2 + [1;0] [nil] = [1;1] [sent](X) = [1 0;0 0].X + [1;0] [TOP](X) = [1 0;1 1].X Problem 1.2: SCC Processor: -> Pairs: TOP(sent(nil)) -> TOP(check(sent(nil))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: TOP(sent(nil)) -> TOP(check(sent(nil))) ->->-> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) Problem 1.2: Reduction Pair Processor: -> Pairs: TOP(sent(nil)) -> TOP(check(sent(nil))) -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) -> Usable rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) ->Interpretation type: Simple mixed ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [check](X) = X.X [rest](X) = X + 2 [cons](X1,X2) = 2.X1.X2 + 2.X1 + X2 + 1 [nil] = 1/2 [sent](X) = X [TOP](X) = X.X Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: check(rest(x:S)) -> rest(check(x:S)) check(cons(x:S,y:S)) -> cons(check(x:S),y:S) check(cons(x:S,y:S)) -> cons(x:S,check(y:S)) check(cons(x:S,y:S)) -> cons(x:S,y:S) check(sent(x:S)) -> sent(check(x:S)) rest(cons(x:S,y:S)) -> sent(y:S) rest(nil) -> sent(nil) top(sent(x:S)) -> top(check(rest(x:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.