/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 207 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 62 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 80 ms] (6) QTRS (7) QTRSRRRProof [EQUIVALENT, 47 ms] (8) QTRS (9) QTRSRRRProof [EQUIVALENT, 22 ms] (10) QTRS (11) QTRSRRRProof [EQUIVALENT, 22 ms] (12) QTRS (13) QTRSRRRProof [EQUIVALENT, 40 ms] (14) QTRS (15) DependencyPairsProof [EQUIVALENT, 0 ms] (16) QDP (17) DependencyGraphProof [EQUIVALENT, 0 ms] (18) AND (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QDPSizeChangeProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) UsableRulesProof [EQUIVALENT, 0 ms] (26) QDP (27) QDPSizeChangeProof [EQUIVALENT, 0 ms] (28) YES (29) QDP (30) UsableRulesProof [EQUIVALENT, 0 ms] (31) QDP (32) MRRProof [EQUIVALENT, 0 ms] (33) QDP (34) PisEmptyProof [EQUIVALENT, 0 ms] (35) YES (36) QDP (37) UsableRulesProof [EQUIVALENT, 0 ms] (38) QDP (39) MRRProof [EQUIVALENT, 0 ms] (40) QDP (41) QDPSizeChangeProof [EQUIVALENT, 0 ms] (42) YES (43) QDP (44) UsableRulesProof [EQUIVALENT, 0 ms] (45) QDP (46) QDPSizeChangeProof [EQUIVALENT, 0 ms] (47) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(0) -> 0 Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Log(x) -> -(Log'(x), I(0)) Val(L(x)) -> x Val(N(x, l, r)) -> x Min(L(x)) -> x Min(N(x, l, r)) -> Min(l) Max(L(x)) -> x Max(N(x, l, r)) -> Max(r) BS(L(x)) -> true BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r))) Size(L(x)) -> I(0) Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1)) WB(L(x)) -> true WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r))) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + 2*x_2 POL(-(x_1, x_2)) = x_1 + 2*x_2 POL(0) = 0 POL(1) = 0 POL(BS(x_1)) = 2*x_1 POL(I(x_1)) = 2*x_1 POL(L(x_1)) = x_1 POL(Log(x_1)) = 2 + x_1 POL(Log'(x_1)) = x_1 POL(Max(x_1)) = x_1 POL(Min(x_1)) = 2*x_1 POL(N(x_1, x_2, x_3)) = 2*x_1 + x_2 + x_3 POL(O(x_1)) = 2*x_1 POL(Size(x_1)) = x_1 POL(Val(x_1)) = 2*x_1 POL(WB(x_1)) = x_1 POL(and(x_1, x_2)) = x_1 + 2*x_2 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + x_2 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(l) = 0 POL(not(x_1)) = x_1 POL(r) = 0 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: Log(x) -> -(Log'(x), I(0)) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(0) -> 0 Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Val(L(x)) -> x Val(N(x, l, r)) -> x Min(L(x)) -> x Min(N(x, l, r)) -> Min(l) Max(L(x)) -> x Max(N(x, l, r)) -> Max(r) BS(L(x)) -> true BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r))) Size(L(x)) -> I(0) Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1)) WB(L(x)) -> true WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r))) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + x_2 POL(-(x_1, x_2)) = x_1 + x_2 POL(0) = 0 POL(1) = 0 POL(BS(x_1)) = 2*x_1 POL(I(x_1)) = 2*x_1 POL(L(x_1)) = x_1 POL(Log'(x_1)) = 2*x_1 POL(Max(x_1)) = x_1 POL(Min(x_1)) = x_1 POL(N(x_1, x_2, x_3)) = 2*x_1 + x_2 + x_3 POL(O(x_1)) = 2*x_1 POL(Size(x_1)) = x_1 POL(Val(x_1)) = 1 + 2*x_1 POL(WB(x_1)) = x_1 POL(and(x_1, x_2)) = x_1 + x_2 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + x_2 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(l) = 0 POL(not(x_1)) = x_1 POL(r) = 0 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: Val(L(x)) -> x Val(N(x, l, r)) -> x ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(0) -> 0 Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Min(L(x)) -> x Min(N(x, l, r)) -> Min(l) Max(L(x)) -> x Max(N(x, l, r)) -> Max(r) BS(L(x)) -> true BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r))) Size(L(x)) -> I(0) Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1)) WB(L(x)) -> true WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r))) Q is empty. ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + 2*x_2 POL(-(x_1, x_2)) = x_1 + 2*x_2 POL(0) = 0 POL(1) = 0 POL(BS(x_1)) = 2*x_1 POL(I(x_1)) = 2*x_1 POL(L(x_1)) = x_1 POL(Log'(x_1)) = 2*x_1 POL(Max(x_1)) = 2 + 2*x_1 POL(Min(x_1)) = x_1 POL(N(x_1, x_2, x_3)) = 2 + 2*x_1 + 2*x_2 + x_3 POL(O(x_1)) = 2*x_1 POL(Size(x_1)) = 2*x_1 POL(WB(x_1)) = x_1 POL(and(x_1, x_2)) = x_1 + 2*x_2 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + x_2 POL(if(x_1, x_2, x_3)) = 2*x_1 + x_2 + x_3 POL(l) = 0 POL(not(x_1)) = 2*x_1 POL(r) = 0 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: Min(N(x, l, r)) -> Min(l) Max(L(x)) -> x Max(N(x, l, r)) -> Max(r) BS(N(x, l, r)) -> and(and(ge(x, Max(l)), ge(Min(r), x)), and(BS(l), BS(r))) Size(N(x, l, r)) -> +(+(Size(l), Size(r)), I(1)) WB(N(x, l, r)) -> and(if(ge(Size(l), Size(r)), ge(I(0), -(Size(l), Size(r))), ge(I(0), -(Size(r), Size(l)))), and(WB(l), WB(r))) ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(0) -> 0 Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Min(L(x)) -> x BS(L(x)) -> true Size(L(x)) -> I(0) WB(L(x)) -> true Q is empty. ---------------------------------------- (7) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + x_2 POL(-(x_1, x_2)) = x_1 + 2*x_2 POL(0) = 0 POL(1) = 0 POL(BS(x_1)) = 2 + 2*x_1 POL(I(x_1)) = 2*x_1 POL(L(x_1)) = x_1 POL(Log'(x_1)) = 2*x_1 POL(Min(x_1)) = x_1 POL(O(x_1)) = 2*x_1 POL(Size(x_1)) = x_1 POL(WB(x_1)) = 2 + 2*x_1 POL(and(x_1, x_2)) = 2 + x_1 + 2*x_2 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + 2*x_2 POL(if(x_1, x_2, x_3)) = 2*x_1 + x_2 + x_3 POL(not(x_1)) = x_1 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: and(x, true) -> x and(x, false) -> false BS(L(x)) -> true WB(L(x)) -> true ---------------------------------------- (8) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(0) -> 0 Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Min(L(x)) -> x Size(L(x)) -> I(0) Q is empty. ---------------------------------------- (9) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + 2*x_2 POL(-(x_1, x_2)) = x_1 + x_2 POL(0) = 0 POL(1) = 0 POL(I(x_1)) = 2*x_1 POL(L(x_1)) = x_1 POL(Log'(x_1)) = 2*x_1 POL(Min(x_1)) = 1 + x_1 POL(O(x_1)) = 2*x_1 POL(Size(x_1)) = x_1 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + x_2 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + 2*x_3 POL(not(x_1)) = 2*x_1 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: Min(L(x)) -> x ---------------------------------------- (10) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(0) -> 0 Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Size(L(x)) -> I(0) Q is empty. ---------------------------------------- (11) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + 2*x_2 POL(-(x_1, x_2)) = x_1 + x_2 POL(0) = 0 POL(1) = 0 POL(I(x_1)) = 2*x_1 POL(L(x_1)) = 2 + x_1 POL(Log'(x_1)) = x_1 POL(O(x_1)) = 2*x_1 POL(Size(x_1)) = 1 + 2*x_1 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + x_2 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + 2*x_3 POL(not(x_1)) = x_1 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: Size(L(x)) -> I(0) ---------------------------------------- (12) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(0) -> 0 Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. ---------------------------------------- (13) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + 2*x_2 POL(-(x_1, x_2)) = x_1 + 2*x_2 POL(0) = 0 POL(1) = 0 POL(I(x_1)) = 2*x_1 POL(Log'(x_1)) = 2 + 2*x_1 POL(O(x_1)) = 2*x_1 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + 2*x_2 POL(if(x_1, x_2, x_3)) = 2*x_1 + x_2 + 2*x_3 POL(not(x_1)) = x_1 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: Log'(0) -> 0 ---------------------------------------- (14) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. ---------------------------------------- (15) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(O(x), O(y)) -> O^1(+(x, y)) +^1(O(x), O(y)) -> +^1(x, y) +^1(O(x), I(y)) -> +^1(x, y) +^1(I(x), O(y)) -> +^1(x, y) +^1(I(x), I(y)) -> O^1(+(+(x, y), I(0))) +^1(I(x), I(y)) -> +^1(+(x, y), I(0)) +^1(I(x), I(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) -^1(O(x), O(y)) -> O^1(-(x, y)) -^1(O(x), O(y)) -> -^1(x, y) -^1(O(x), I(y)) -> -^1(-(x, y), I(1)) -^1(O(x), I(y)) -> -^1(x, y) -^1(I(x), O(y)) -> -^1(x, y) -^1(I(x), I(y)) -> O^1(-(x, y)) -^1(I(x), I(y)) -> -^1(x, y) GE(O(x), O(y)) -> GE(x, y) GE(O(x), I(y)) -> NOT(ge(y, x)) GE(O(x), I(y)) -> GE(y, x) GE(I(x), O(y)) -> GE(x, y) GE(I(x), I(y)) -> GE(x, y) GE(0, O(x)) -> GE(0, x) LOG'(I(x)) -> +^1(Log'(x), I(0)) LOG'(I(x)) -> LOG'(x) LOG'(O(x)) -> IF(ge(x, I(0)), +(Log'(x), I(0)), 0) LOG'(O(x)) -> GE(x, I(0)) LOG'(O(x)) -> +^1(Log'(x), I(0)) LOG'(O(x)) -> LOG'(x) The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 9 less nodes. ---------------------------------------- (18) Complex Obligation (AND) ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: GE(0, O(x)) -> GE(0, x) The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: GE(0, O(x)) -> GE(0, x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(0, O(x)) -> GE(0, x) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: GE(O(x), I(y)) -> GE(y, x) GE(O(x), O(y)) -> GE(x, y) GE(I(x), O(y)) -> GE(x, y) GE(I(x), I(y)) -> GE(x, y) The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: GE(O(x), I(y)) -> GE(y, x) GE(O(x), O(y)) -> GE(x, y) GE(I(x), O(y)) -> GE(x, y) GE(I(x), I(y)) -> GE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(O(x), I(y)) -> GE(y, x) The graph contains the following edges 2 > 1, 1 > 2 *GE(O(x), O(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 *GE(I(x), O(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 *GE(I(x), I(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (28) YES ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(O(x), I(y)) -> -^1(-(x, y), I(1)) -^1(O(x), I(y)) -> -^1(x, y) -^1(O(x), O(y)) -> -^1(x, y) -^1(I(x), O(y)) -> -^1(x, y) -^1(I(x), I(y)) -> -^1(x, y) The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(O(x), I(y)) -> -^1(-(x, y), I(1)) -^1(O(x), I(y)) -> -^1(x, y) -^1(O(x), O(y)) -> -^1(x, y) -^1(I(x), O(y)) -> -^1(x, y) -^1(I(x), I(y)) -> -^1(x, y) The TRS R consists of the following rules: -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) O(0) -> 0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: -^1(O(x), I(y)) -> -^1(-(x, y), I(1)) -^1(O(x), I(y)) -> -^1(x, y) -^1(O(x), O(y)) -> -^1(x, y) -^1(I(x), O(y)) -> -^1(x, y) -^1(I(x), I(y)) -> -^1(x, y) Strictly oriented rules of the TRS R: -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) O(0) -> 0 Used ordering: Knuth-Bendix order [KBO] with precedence:-^1_2 > 0 > -_2 > 1 > O_1 > I_1 and weight map: 0=1 1=2 O_1=5 I_1=3 -_2=0 -^1_2=0 The variable weight is 1 ---------------------------------------- (33) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (35) YES ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(O(x), I(y)) -> +^1(x, y) +^1(O(x), O(y)) -> +^1(x, y) +^1(I(x), O(y)) -> +^1(x, y) +^1(I(x), I(y)) -> +^1(+(x, y), I(0)) +^1(I(x), I(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(O(x), I(y)) -> +^1(x, y) +^1(O(x), O(y)) -> +^1(x, y) +^1(I(x), O(y)) -> +^1(x, y) +^1(I(x), I(y)) -> +^1(+(x, y), I(0)) +^1(I(x), I(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) The TRS R consists of the following rules: +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) O(0) -> 0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: +^1(O(x), I(y)) -> +^1(x, y) +^1(I(x), O(y)) -> +^1(x, y) +^1(I(x), I(y)) -> +^1(+(x, y), I(0)) +^1(I(x), I(y)) -> +^1(x, y) Used ordering: Polynomial interpretation [POLO]: POL(+(x_1, x_2)) = x_1 + x_2 POL(+^1(x_1, x_2)) = 2*x_1 + 2*x_2 POL(0) = 0 POL(I(x_1)) = 2 + 2*x_1 POL(O(x_1)) = 2*x_1 ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(O(x), O(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) The TRS R consists of the following rules: +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) O(0) -> 0 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *+^1(O(x), O(y)) -> +^1(x, y) The graph contains the following edges 1 > 1, 2 > 2 *+^1(x, +(y, z)) -> +^1(+(x, y), z) The graph contains the following edges 2 > 2 *+^1(x, +(y, z)) -> +^1(x, y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (42) YES ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: LOG'(O(x)) -> LOG'(x) LOG'(I(x)) -> LOG'(x) The TRS R consists of the following rules: O(0) -> 0 +(0, x) -> x +(x, 0) -> x +(O(x), O(y)) -> O(+(x, y)) +(O(x), I(y)) -> I(+(x, y)) +(I(x), O(y)) -> I(+(x, y)) +(I(x), I(y)) -> O(+(+(x, y), I(0))) +(x, +(y, z)) -> +(+(x, y), z) -(x, 0) -> x -(0, x) -> 0 -(O(x), O(y)) -> O(-(x, y)) -(O(x), I(y)) -> I(-(-(x, y), I(1))) -(I(x), O(y)) -> I(-(x, y)) -(I(x), I(y)) -> O(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(O(x), O(y)) -> ge(x, y) ge(O(x), I(y)) -> not(ge(y, x)) ge(I(x), O(y)) -> ge(x, y) ge(I(x), I(y)) -> ge(x, y) ge(x, 0) -> true ge(0, O(x)) -> ge(0, x) ge(0, I(x)) -> false Log'(I(x)) -> +(Log'(x), I(0)) Log'(O(x)) -> if(ge(x, I(0)), +(Log'(x), I(0)), 0) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: LOG'(O(x)) -> LOG'(x) LOG'(I(x)) -> LOG'(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LOG'(O(x)) -> LOG'(x) The graph contains the following edges 1 > 1 *LOG'(I(x)) -> LOG'(x) The graph contains the following edges 1 > 1 ---------------------------------------- (47) YES