/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ) Problem 1: Innermost Equivalent Processor: -> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: COND(ttrue,x:S,y:S) -> AND(gr(x:S,0),gr(y:S,0)) COND(ttrue,x:S,y:S) -> COND(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) COND(ttrue,x:S,y:S) -> GR(x:S,0) COND(ttrue,x:S,y:S) -> GR(y:S,0) COND(ttrue,x:S,y:S) -> P(x:S) COND(ttrue,x:S,y:S) -> P(y:S) GR(s(x:S),s(y:S)) -> GR(x:S,y:S) -> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S Problem 1: SCC Processor: -> Pairs: COND(ttrue,x:S,y:S) -> AND(gr(x:S,0),gr(y:S,0)) COND(ttrue,x:S,y:S) -> COND(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) COND(ttrue,x:S,y:S) -> GR(x:S,0) COND(ttrue,x:S,y:S) -> GR(y:S,0) COND(ttrue,x:S,y:S) -> P(x:S) COND(ttrue,x:S,y:S) -> P(y:S) GR(s(x:S),s(y:S)) -> GR(x:S,y:S) -> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: GR(s(x:S),s(y:S)) -> GR(x:S,y:S) ->->-> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->->Cycle: ->->-> Pairs: COND(ttrue,x:S,y:S) -> COND(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) ->->-> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S The problem is decomposed in 2 subproblems. Problem 1.1: Subterm Processor: -> Pairs: GR(s(x:S),s(y:S)) -> GR(x:S,y:S) -> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Projection: pi(GR) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: COND(ttrue,x:S,y:S) -> COND(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) -> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S -> Usable rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [and](X1,X2) = X1 [cond](X1,X2,X3) = 0 [gr](X1,X2) = X1 [p](X) = 1/2.X [0] = 0 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 1/2 [true] = 1/2 [AND](X1,X2) = 0 [COND](X1,X2,X3) = 1/2.X1 + X2 [GR](X1,X2) = 0 [P](X) = 0 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: and(ffalse,x:S) -> ffalse and(ttrue,ttrue) -> ttrue and(x:S,ffalse) -> ffalse cond(ttrue,x:S,y:S) -> cond(and(gr(x:S,0),gr(y:S,0)),p(x:S),p(y:S)) gr(0,0) -> ffalse gr(0,x:S) -> ffalse gr(s(x:S),0) -> ttrue gr(s(x:S),s(y:S)) -> gr(x:S,y:S) p(0) -> 0 p(s(x:S)) -> x:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.