/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 1 initial DP problem to solve. ## First, we try to decompose this problem into smaller problems. ## Round 1 [1 DP problem]: ## DP problem: Dependency pairs = [f^#(s(_0),s(_1),_2,_3) -> f^#(_0,_3,_2,_3), f^#(s(_0),0,_1,_2) -> f^#(_0,_2,minus(_1,s(_0)),_2)] TRS = {perfectp(0) -> false, perfectp(s(_0)) -> f(_0,s(0),s(_0),s(_0)), f(0,_0,0,_1) -> true, f(0,_0,s(_1),_2) -> false, f(s(_0),0,_1,_2) -> f(_0,_2,minus(_1,s(_0)),_2), f(s(_0),s(_1),_2,_3) -> if(le(_0,_1),f(s(_0),minus(_1,_0),_2,_3),f(_0,_3,_2,_3))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {minus:[0, 1], f:[0, 1, 2, 3], if:[0], le:[0, 1], perfectp:[0], s:[0], f^#:[0, 1, 2, 3]} and the precedence: f > [minus, le, if], 0 > [true, false], f^# > [minus], perfectp > [minus, true, f, 0, false, le, s, if], s > [true, 0, false] This DP problem is finite. ## All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 0