/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S u:S x:S y:S z:S) (RULES f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ) Problem 1: Innermost Equivalent Processor: -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: F(s(x:S),0,z:S,u:S) -> F(x:S,u:S,minus(z:S,s(x:S)),u:S) F(s(x:S),0,z:S,u:S) -> MINUS(z:S,s(x:S)) F(s(x:S),s(y:S),z:S,u:S) -> F(s(x:S),minus(y:S,x:S),z:S,u:S) F(s(x:S),s(y:S),z:S,u:S) -> F(x:S,u:S,z:S,u:S) F(s(x:S),s(y:S),z:S,u:S) -> IF(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) F(s(x:S),s(y:S),z:S,u:S) -> LE(x:S,y:S) F(s(x:S),s(y:S),z:S,u:S) -> MINUS(y:S,x:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) PERFECTP(s(x:S)) -> F(x:S,s(0),s(x:S),s(x:S)) -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) Problem 1: SCC Processor: -> Pairs: F(s(x:S),0,z:S,u:S) -> F(x:S,u:S,minus(z:S,s(x:S)),u:S) F(s(x:S),0,z:S,u:S) -> MINUS(z:S,s(x:S)) F(s(x:S),s(y:S),z:S,u:S) -> F(s(x:S),minus(y:S,x:S),z:S,u:S) F(s(x:S),s(y:S),z:S,u:S) -> F(x:S,u:S,z:S,u:S) F(s(x:S),s(y:S),z:S,u:S) -> IF(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) F(s(x:S),s(y:S),z:S,u:S) -> LE(x:S,y:S) F(s(x:S),s(y:S),z:S,u:S) -> MINUS(y:S,x:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) PERFECTP(s(x:S)) -> F(x:S,s(0),s(x:S),s(x:S)) -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) ->->-> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->->Cycle: ->->-> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) ->->-> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->->Cycle: ->->-> Pairs: F(s(x:S),0,z:S,u:S) -> F(x:S,u:S,minus(z:S,s(x:S)),u:S) F(s(x:S),s(y:S),z:S,u:S) -> F(s(x:S),minus(y:S,x:S),z:S,u:S) F(s(x:S),s(y:S),z:S,u:S) -> F(x:S,u:S,z:S,u:S) ->->-> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x:S),s(y:S)) -> MINUS(x:S,y:S) -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Projection: pi(LE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: F(s(x:S),0,z:S,u:S) -> F(x:S,u:S,minus(z:S,s(x:S)),u:S) F(s(x:S),s(y:S),z:S,u:S) -> F(s(x:S),minus(y:S,x:S),z:S,u:S) F(s(x:S),s(y:S),z:S,u:S) -> F(x:S,u:S,z:S,u:S) -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Projection: pi(F) = 1 Problem 1.3: SCC Processor: -> Pairs: F(s(x:S),s(y:S),z:S,u:S) -> F(s(x:S),minus(y:S,x:S),z:S,u:S) -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: F(s(x:S),s(y:S),z:S,u:S) -> F(s(x:S),minus(y:S,x:S),z:S,u:S) ->->-> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) Problem 1.3: Reduction Pairs Processor: -> Pairs: F(s(x:S),s(y:S),z:S,u:S) -> F(s(x:S),minus(y:S,x:S),z:S,u:S) -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) -> Usable rules: minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [f](X1,X2,X3,X4) = 0 [if](X1,X2,X3) = 0 [le](X1,X2) = 0 [minus](X1,X2) = 2.X1 + 1 [perfectp](X) = 0 [0] = 2 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [F](X1,X2,X3,X4) = 2.X2 [IF](X1,X2,X3) = 0 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 [PERFECTP](X) = 0 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: f(0,y:S,0,u:S) -> ttrue f(0,y:S,s(z:S),u:S) -> ffalse f(s(x:S),0,z:S,u:S) -> f(x:S,u:S,minus(z:S,s(x:S)),u:S) f(s(x:S),s(y:S),z:S,u:S) -> if(le(x:S,y:S),f(s(x:S),minus(y:S,x:S),z:S,u:S),f(x:S,u:S,z:S,u:S)) if(ffalse,x:S,y:S) -> y:S if(ttrue,x:S,y:S) -> x:S le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),0) -> s(x:S) minus(s(x:S),s(y:S)) -> minus(x:S,y:S) perfectp(0) -> ffalse perfectp(s(x:S)) -> f(x:S,s(0),s(x:S),s(x:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.