/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S X:S Y:S) (RULES log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ) Problem 1: Innermost Equivalent Processor: -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: LOG(s(s(X:S))) -> LOG(s(quot(X:S,s(s(0))))) LOG(s(s(X:S))) -> QUOT(X:S,s(s(0))) MIN(s(X:S),s(Y:S)) -> MIN(X:S,Y:S) QUOT(s(X:S),s(Y:S)) -> MIN(X:S,Y:S) QUOT(s(X:S),s(Y:S)) -> QUOT(min(X:S,Y:S),s(Y:S)) -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) Problem 1: SCC Processor: -> Pairs: LOG(s(s(X:S))) -> LOG(s(quot(X:S,s(s(0))))) LOG(s(s(X:S))) -> QUOT(X:S,s(s(0))) MIN(s(X:S),s(Y:S)) -> MIN(X:S,Y:S) QUOT(s(X:S),s(Y:S)) -> MIN(X:S,Y:S) QUOT(s(X:S),s(Y:S)) -> QUOT(min(X:S,Y:S),s(Y:S)) -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MIN(s(X:S),s(Y:S)) -> MIN(X:S,Y:S) ->->-> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->->Cycle: ->->-> Pairs: QUOT(s(X:S),s(Y:S)) -> QUOT(min(X:S,Y:S),s(Y:S)) ->->-> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->->Cycle: ->->-> Pairs: LOG(s(s(X:S))) -> LOG(s(quot(X:S,s(s(0))))) ->->-> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MIN(s(X:S),s(Y:S)) -> MIN(X:S,Y:S) -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->Projection: pi(MIN) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: QUOT(s(X:S),s(Y:S)) -> QUOT(min(X:S,Y:S),s(Y:S)) -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) -> Usable rules: min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [log](X) = 0 [min](X1,X2) = 2.X1 + 1 [quot](X1,X2) = 0 [0] = 0 [fSNonEmpty] = 0 [s](X) = 2.X + 2 [LOG](X) = 0 [MIN](X1,X2) = 0 [QUOT](X1,X2) = 2.X1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: LOG(s(s(X:S))) -> LOG(s(quot(X:S,s(s(0))))) -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) -> Usable rules: min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [log](X) = 0 [min](X1,X2) = X1 [quot](X1,X2) = 2.X1 + 1 [0] = 0 [fSNonEmpty] = 0 [s](X) = 2.X + 2 [LOG](X) = 2.X [MIN](X1,X2) = 0 [QUOT](X1,X2) = 0 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: log(s(0)) -> 0 log(s(s(X:S))) -> s(log(s(quot(X:S,s(s(0)))))) min(s(X:S),s(Y:S)) -> min(X:S,Y:S) min(X:S,0) -> X:S quot(0,s(Y:S)) -> 0 quot(s(X:S),s(Y:S)) -> s(quot(min(X:S,Y:S),s(Y:S))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.