/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S X:S Y:S) (RULES gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ) Problem 1: Innermost Equivalent Processor: -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: GCD(s(X:S),s(Y:S)) -> IF(le(Y:S,X:S),s(X:S),s(Y:S)) GCD(s(X:S),s(Y:S)) -> LE(Y:S,X:S) IF(ffalse,s(X:S),s(Y:S)) -> GCD(minus(Y:S,X:S),s(X:S)) IF(ffalse,s(X:S),s(Y:S)) -> MINUS(Y:S,X:S) IF(ttrue,s(X:S),s(Y:S)) -> GCD(minus(X:S,Y:S),s(Y:S)) IF(ttrue,s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) LE(s(X:S),s(Y:S)) -> LE(X:S,Y:S) MINUS(X:S,s(Y:S)) -> MINUS(X:S,Y:S) MINUS(X:S,s(Y:S)) -> PRED(minus(X:S,Y:S)) -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S Problem 1: SCC Processor: -> Pairs: GCD(s(X:S),s(Y:S)) -> IF(le(Y:S,X:S),s(X:S),s(Y:S)) GCD(s(X:S),s(Y:S)) -> LE(Y:S,X:S) IF(ffalse,s(X:S),s(Y:S)) -> GCD(minus(Y:S,X:S),s(X:S)) IF(ffalse,s(X:S),s(Y:S)) -> MINUS(Y:S,X:S) IF(ttrue,s(X:S),s(Y:S)) -> GCD(minus(X:S,Y:S),s(Y:S)) IF(ttrue,s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) LE(s(X:S),s(Y:S)) -> LE(X:S,Y:S) MINUS(X:S,s(Y:S)) -> MINUS(X:S,Y:S) MINUS(X:S,s(Y:S)) -> PRED(minus(X:S,Y:S)) -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(X:S,s(Y:S)) -> MINUS(X:S,Y:S) ->->-> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->->Cycle: ->->-> Pairs: LE(s(X:S),s(Y:S)) -> LE(X:S,Y:S) ->->-> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->->Cycle: ->->-> Pairs: GCD(s(X:S),s(Y:S)) -> IF(le(Y:S,X:S),s(X:S),s(Y:S)) IF(ffalse,s(X:S),s(Y:S)) -> GCD(minus(Y:S,X:S),s(X:S)) IF(ttrue,s(X:S),s(Y:S)) -> GCD(minus(X:S,Y:S),s(Y:S)) ->->-> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(X:S,s(Y:S)) -> MINUS(X:S,Y:S) -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->Projection: pi(MINUS) = 2 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: LE(s(X:S),s(Y:S)) -> LE(X:S,Y:S) -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->Projection: pi(LE) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(X:S),s(Y:S)) -> IF(le(Y:S,X:S),s(X:S),s(Y:S)) IF(ffalse,s(X:S),s(Y:S)) -> GCD(minus(Y:S,X:S),s(X:S)) IF(ttrue,s(X:S),s(Y:S)) -> GCD(minus(X:S,Y:S),s(Y:S)) -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S -> Usable rules: le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [gcd](X1,X2) = 0 [if](X1,X2,X3) = 0 [le](X1,X2) = 0 [minus](X1,X2) = 2.X1 + 1 [pred](X) = X [0] = 1 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [GCD](X1,X2) = X1 + X2 + 2 [IF](X1,X2,X3) = 2.X1 + X2 + X3 + 1 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 [PRED](X) = 0 Problem 1.3: SCC Processor: -> Pairs: IF(ffalse,s(X:S),s(Y:S)) -> GCD(minus(Y:S,X:S),s(X:S)) IF(ttrue,s(X:S),s(Y:S)) -> GCD(minus(X:S,Y:S),s(Y:S)) -> Rules: gcd(0,Y:S) -> 0 gcd(s(X:S),0) -> s(X:S) gcd(s(X:S),s(Y:S)) -> if(le(Y:S,X:S),s(X:S),s(Y:S)) if(ffalse,s(X:S),s(Y:S)) -> gcd(minus(Y:S,X:S),s(X:S)) if(ttrue,s(X:S),s(Y:S)) -> gcd(minus(X:S,Y:S),s(Y:S)) le(0,Y:S) -> ttrue le(s(X:S),0) -> ffalse le(s(X:S),s(Y:S)) -> le(X:S,Y:S) minus(X:S,0) -> X:S minus(X:S,s(Y:S)) -> pred(minus(X:S,Y:S)) pred(s(X:S)) -> X:S ->Strongly Connected Components: There is no strongly connected component The problem is finite.