/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) NonLoopProof [COMPLETE, 9295 ms] (17) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: notZero(pos(s(x))) -> true notZero(neg(s(x))) -> true notZero(neg(0)) -> false notZero(pos(0)) -> false greaterZero(pos(s(x))) -> true greaterZero(pos(0)) -> false greaterZero(neg(x)) -> false and(false, false) -> false and(false, true) -> false and(true, false) -> false and(true, true) -> true minusT(0, y) -> neg(y) minusT(x, 0) -> pos(x) minusT(s(x), s(y)) -> minusT(x, y) plusNat(0, y) -> y plusNat(s(x), y) -> plusNat(x, s(y)) negate(pos(x)) -> neg(x) negate(neg(x)) -> pos(x) minus(pos(x), pos(y)) -> minusT(x, y) minus(neg(x), neg(y)) -> negate(minusT(x, y)) minus(pos(x), neg(y)) -> pos(plusNat(x, y)) minus(neg(x), pos(y)) -> neg(plusNat(x, y)) while(true, i, y) -> while(and(notZero(y), greaterZero(i)), minus(i, y), y) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: MINUST(s(x), s(y)) -> MINUST(x, y) PLUSNAT(s(x), y) -> PLUSNAT(x, s(y)) MINUS(pos(x), pos(y)) -> MINUST(x, y) MINUS(neg(x), neg(y)) -> NEGATE(minusT(x, y)) MINUS(neg(x), neg(y)) -> MINUST(x, y) MINUS(pos(x), neg(y)) -> PLUSNAT(x, y) MINUS(neg(x), pos(y)) -> PLUSNAT(x, y) WHILE(true, i, y) -> WHILE(and(notZero(y), greaterZero(i)), minus(i, y), y) WHILE(true, i, y) -> AND(notZero(y), greaterZero(i)) WHILE(true, i, y) -> NOTZERO(y) WHILE(true, i, y) -> GREATERZERO(i) WHILE(true, i, y) -> MINUS(i, y) The TRS R consists of the following rules: notZero(pos(s(x))) -> true notZero(neg(s(x))) -> true notZero(neg(0)) -> false notZero(pos(0)) -> false greaterZero(pos(s(x))) -> true greaterZero(pos(0)) -> false greaterZero(neg(x)) -> false and(false, false) -> false and(false, true) -> false and(true, false) -> false and(true, true) -> true minusT(0, y) -> neg(y) minusT(x, 0) -> pos(x) minusT(s(x), s(y)) -> minusT(x, y) plusNat(0, y) -> y plusNat(s(x), y) -> plusNat(x, s(y)) negate(pos(x)) -> neg(x) negate(neg(x)) -> pos(x) minus(pos(x), pos(y)) -> minusT(x, y) minus(neg(x), neg(y)) -> negate(minusT(x, y)) minus(pos(x), neg(y)) -> pos(plusNat(x, y)) minus(neg(x), pos(y)) -> neg(plusNat(x, y)) while(true, i, y) -> while(and(notZero(y), greaterZero(i)), minus(i, y), y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 9 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: PLUSNAT(s(x), y) -> PLUSNAT(x, s(y)) The TRS R consists of the following rules: notZero(pos(s(x))) -> true notZero(neg(s(x))) -> true notZero(neg(0)) -> false notZero(pos(0)) -> false greaterZero(pos(s(x))) -> true greaterZero(pos(0)) -> false greaterZero(neg(x)) -> false and(false, false) -> false and(false, true) -> false and(true, false) -> false and(true, true) -> true minusT(0, y) -> neg(y) minusT(x, 0) -> pos(x) minusT(s(x), s(y)) -> minusT(x, y) plusNat(0, y) -> y plusNat(s(x), y) -> plusNat(x, s(y)) negate(pos(x)) -> neg(x) negate(neg(x)) -> pos(x) minus(pos(x), pos(y)) -> minusT(x, y) minus(neg(x), neg(y)) -> negate(minusT(x, y)) minus(pos(x), neg(y)) -> pos(plusNat(x, y)) minus(neg(x), pos(y)) -> neg(plusNat(x, y)) while(true, i, y) -> while(and(notZero(y), greaterZero(i)), minus(i, y), y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUSNAT(s(x), y) -> PLUSNAT(x, s(y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUSNAT(s(x), y) -> PLUSNAT(x, s(y)) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MINUST(s(x), s(y)) -> MINUST(x, y) The TRS R consists of the following rules: notZero(pos(s(x))) -> true notZero(neg(s(x))) -> true notZero(neg(0)) -> false notZero(pos(0)) -> false greaterZero(pos(s(x))) -> true greaterZero(pos(0)) -> false greaterZero(neg(x)) -> false and(false, false) -> false and(false, true) -> false and(true, false) -> false and(true, true) -> true minusT(0, y) -> neg(y) minusT(x, 0) -> pos(x) minusT(s(x), s(y)) -> minusT(x, y) plusNat(0, y) -> y plusNat(s(x), y) -> plusNat(x, s(y)) negate(pos(x)) -> neg(x) negate(neg(x)) -> pos(x) minus(pos(x), pos(y)) -> minusT(x, y) minus(neg(x), neg(y)) -> negate(minusT(x, y)) minus(pos(x), neg(y)) -> pos(plusNat(x, y)) minus(neg(x), pos(y)) -> neg(plusNat(x, y)) while(true, i, y) -> while(and(notZero(y), greaterZero(i)), minus(i, y), y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MINUST(s(x), s(y)) -> MINUST(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUST(s(x), s(y)) -> MINUST(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: WHILE(true, i, y) -> WHILE(and(notZero(y), greaterZero(i)), minus(i, y), y) The TRS R consists of the following rules: notZero(pos(s(x))) -> true notZero(neg(s(x))) -> true notZero(neg(0)) -> false notZero(pos(0)) -> false greaterZero(pos(s(x))) -> true greaterZero(pos(0)) -> false greaterZero(neg(x)) -> false and(false, false) -> false and(false, true) -> false and(true, false) -> false and(true, true) -> true minusT(0, y) -> neg(y) minusT(x, 0) -> pos(x) minusT(s(x), s(y)) -> minusT(x, y) plusNat(0, y) -> y plusNat(s(x), y) -> plusNat(x, s(y)) negate(pos(x)) -> neg(x) negate(neg(x)) -> pos(x) minus(pos(x), pos(y)) -> minusT(x, y) minus(neg(x), neg(y)) -> negate(minusT(x, y)) minus(pos(x), neg(y)) -> pos(plusNat(x, y)) minus(neg(x), pos(y)) -> neg(plusNat(x, y)) while(true, i, y) -> while(and(notZero(y), greaterZero(i)), minus(i, y), y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 1, b = 1, σ' = [ ], and μ' = [ ] on the rule WHILE(true, pos(s(s(zr1))), neg(s(0)))[zr1 / s(zr1)]^n[zr1 / 0] -> WHILE(true, pos(s(s(s(zr1)))), neg(s(0)))[zr1 / s(zr1)]^n[zr1 / 0] This rule is correct for the QDP as the following derivation shows: WHILE(true, pos(s(s(zr1))), neg(s(0)))[zr1 / s(zr1)]^n[zr1 / 0] -> WHILE(true, pos(s(s(s(zr1)))), neg(s(0)))[zr1 / s(zr1)]^n[zr1 / 0] by Equivalency by Simplifying Mu with mu1: [zl1 / 0] mu2: [zr1 / 0] intermediate steps: Equiv Smu (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Instantiate mu - Instantiate mu - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) WHILE(true, pos(s(s(zl1))), neg(s(x0)))[zr1 / s(zr1), zl1 / s(zl1)]^n[zr1 / x0, zl1 / 0] -> WHILE(true, pos(s(s(s(zr1)))), neg(s(x0)))[zr1 / s(zr1), zl1 / s(zl1)]^n[zr1 / x0, zl1 / 0] by Narrowing at position: [1,0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) WHILE(true, pos(s(s(zs1))), neg(s(x0)))[zt1 / s(zt1), zs1 / s(zs1)]^n[zt1 / x0, zs1 / y1] -> WHILE(true, pos(plusNat(y1, s(s(s(zt1))))), neg(s(x0)))[zt1 / s(zt1), zs1 / s(zs1)]^n[zt1 / x0, zs1 / y1] by Narrowing at position: [1,0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation - Instantiation WHILE(true, pos(s(y0)), neg(s(x1)))[ ]^n[ ] -> WHILE(true, pos(plusNat(y0, s(s(x1)))), neg(s(x1)))[ ]^n[ ] by Rewrite t with the rewrite sequence : [([0],and(true, true) -> true), ([1],minus(pos(x), neg(y)) -> pos(plusNat(x, y))), ([1,0],plusNat(s(x), y) -> plusNat(x, s(y)))] WHILE(true, pos(s(y0)), neg(s(x1)))[ ]^n[ ] -> WHILE(and(true, true), minus(pos(s(y0)), neg(s(x1))), neg(s(x1)))[ ]^n[ ] by Narrowing at position: [0,1] intermediate steps: Instantiation - Instantiation WHILE(true, x0, neg(s(y0)))[ ]^n[ ] -> WHILE(and(true, greaterZero(x0)), minus(x0, neg(s(y0))), neg(s(y0)))[ ]^n[ ] by Narrowing at position: [0,0] intermediate steps: Instantiation - Instantiation WHILE(true, i, y)[ ]^n[ ] -> WHILE(and(notZero(y), greaterZero(i)), minus(i, y), y)[ ]^n[ ] by Rule from TRS P intermediate steps: Instantiation notZero(neg(s(x)))[ ]^n[ ] -> true[ ]^n[ ] by Rule from TRS R intermediate steps: Instantiation greaterZero(pos(s(x)))[ ]^n[ ] -> true[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv Smu (rhs) - Instantiation - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) plusNat(s(x), y)[x / s(x)]^n[ ] -> plusNat(x, s(y))[y / s(y)]^n[ ] by PatternCreation I with delta: [ ], theta: [y / s(y)], sigma: [x / s(x)] plusNat(s(x), y)[ ]^n[ ] -> plusNat(x, s(y))[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation - Instantiation plusNat(0, y)[ ]^n[ ] -> y[ ]^n[ ] by Rule from TRS R ---------------------------------------- (17) NO