/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) QDPOrderProof [EQUIVALENT, 13 ms] (4) QDP (5) SemLabProof [SOUND, 212 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (11) QDP (12) PisEmptyProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (16) QDP (17) PisEmptyProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (21) QDP (22) PisEmptyProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (26) QDP (27) PisEmptyProof [EQUIVALENT, 0 ms] (28) YES (29) QDP (30) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (31) QDP (32) PisEmptyProof [EQUIVALENT, 0 ms] (33) YES (34) QDP (35) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (36) QDP (37) PisEmptyProof [EQUIVALENT, 0 ms] (38) YES (39) QDP (40) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (41) QDP (42) PisEmptyProof [EQUIVALENT, 0 ms] (43) YES (44) QDP (45) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (46) QDP (47) PisEmptyProof [EQUIVALENT, 0 ms] (48) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(0, 1, x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(0, 1, x) -> F(g(x), g(x), x) F(g(x), y, z) -> F(x, y, z) F(x, g(y), z) -> F(x, y, z) F(x, y, g(z)) -> F(x, y, z) The TRS R consists of the following rules: f(0, 1, x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(x, y, g(z)) -> F(x, y, z) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. F(x1, x2, x3) = x3 g(x1) = g(x1) Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 g_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(0, 1, x) -> F(g(x), g(x), x) F(g(x), y, z) -> F(x, y, z) F(x, g(y), z) -> F(x, y, z) The TRS R consists of the following rules: f(0, 1, x) -> f(g(x), g(x), x) f(g(x), y, z) -> g(f(x, y, z)) f(x, g(y), z) -> g(f(x, y, z)) f(x, y, g(z)) -> g(f(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. f: 0 0: 0 1: 1 F: 0 g: x0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-1-0(0., 1., x) -> F.0-0-0(g.0(x), g.0(x), x) F.0-0-0(g.0(x), y, z) -> F.0-0-0(x, y, z) F.0-0-1(g.0(x), y, z) -> F.0-0-1(x, y, z) F.0-1-0(g.0(x), y, z) -> F.0-1-0(x, y, z) F.0-1-1(g.0(x), y, z) -> F.0-1-1(x, y, z) F.1-0-0(g.1(x), y, z) -> F.1-0-0(x, y, z) F.1-0-1(g.1(x), y, z) -> F.1-0-1(x, y, z) F.1-1-0(g.1(x), y, z) -> F.1-1-0(x, y, z) F.1-1-1(g.1(x), y, z) -> F.1-1-1(x, y, z) F.0-1-1(0., 1., x) -> F.1-1-1(g.1(x), g.1(x), x) F.0-0-0(x, g.0(y), z) -> F.0-0-0(x, y, z) F.0-0-1(x, g.0(y), z) -> F.0-0-1(x, y, z) F.0-1-0(x, g.1(y), z) -> F.0-1-0(x, y, z) F.0-1-1(x, g.1(y), z) -> F.0-1-1(x, y, z) F.1-0-0(x, g.0(y), z) -> F.1-0-0(x, y, z) F.1-0-1(x, g.0(y), z) -> F.1-0-1(x, y, z) F.1-1-0(x, g.1(y), z) -> F.1-1-0(x, y, z) F.1-1-1(x, g.1(y), z) -> F.1-1-1(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 2 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-1-1(x, g.1(y), z) -> F.1-1-1(x, y, z) F.1-1-1(g.1(x), y, z) -> F.1-1-1(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.1-1-1(x, g.1(y), z) -> F.1-1-1(x, y, z) F.1-1-1(g.1(x), y, z) -> F.1-1-1(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.1-1-1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.1(x_1)) = x_1 ---------------------------------------- (11) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-1-0(x, g.1(y), z) -> F.1-1-0(x, y, z) F.1-1-0(g.1(x), y, z) -> F.1-1-0(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.1-1-0(x, g.1(y), z) -> F.1-1-0(x, y, z) F.1-1-0(g.1(x), y, z) -> F.1-1-0(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.1-1-0(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.1(x_1)) = x_1 ---------------------------------------- (16) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0-1(x, g.0(y), z) -> F.1-0-1(x, y, z) F.1-0-1(g.1(x), y, z) -> F.1-0-1(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.1-0-1(x, g.0(y), z) -> F.1-0-1(x, y, z) F.1-0-1(g.1(x), y, z) -> F.1-0-1(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.1-0-1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 ---------------------------------------- (21) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0-0(x, g.0(y), z) -> F.1-0-0(x, y, z) F.1-0-0(g.1(x), y, z) -> F.1-0-0(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.1-0-0(x, g.0(y), z) -> F.1-0-0(x, y, z) F.1-0-0(g.1(x), y, z) -> F.1-0-0(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.1-0-0(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 ---------------------------------------- (26) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (28) YES ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-1-1(x, g.1(y), z) -> F.0-1-1(x, y, z) F.0-1-1(g.0(x), y, z) -> F.0-1-1(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.0-1-1(x, g.1(y), z) -> F.0-1-1(x, y, z) F.0-1-1(g.0(x), y, z) -> F.0-1-1(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-1-1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 ---------------------------------------- (31) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (33) YES ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0-1(x, g.0(y), z) -> F.0-0-1(x, y, z) F.0-0-1(g.0(x), y, z) -> F.0-0-1(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.0-0-1(x, g.0(y), z) -> F.0-0-1(x, y, z) F.0-0-1(g.0(x), y, z) -> F.0-0-1(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-0-1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.0(x_1)) = x_1 ---------------------------------------- (36) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (38) YES ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0-0(x, g.0(y), z) -> F.0-0-0(x, y, z) F.0-0-0(g.0(x), y, z) -> F.0-0-0(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.0-0-0(x, g.0(y), z) -> F.0-0-0(x, y, z) F.0-0-0(g.0(x), y, z) -> F.0-0-0(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-0-0(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.0(x_1)) = x_1 ---------------------------------------- (41) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (43) YES ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-1-0(x, g.1(y), z) -> F.0-1-0(x, y, z) F.0-1-0(g.0(x), y, z) -> F.0-1-0(x, y, z) The TRS R consists of the following rules: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.0-1-0(x, g.1(y), z) -> F.0-1-0(x, y, z) F.0-1-0(g.0(x), y, z) -> F.0-1-0(x, y, z) The following rules are removed from R: f.0-1-0(0., 1., x) -> f.0-0-0(g.0(x), g.0(x), x) f.0-1-1(0., 1., x) -> f.1-1-1(g.1(x), g.1(x), x) f.0-0-0(g.0(x), y, z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(g.0(x), y, z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(g.0(x), y, z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(g.0(x), y, z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(g.1(x), y, z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(g.1(x), y, z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(g.1(x), y, z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(g.1(x), y, z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, g.0(y), z) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, g.0(y), z) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, g.1(y), z) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, g.1(y), z) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, g.0(y), z) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, g.0(y), z) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, g.1(y), z) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, g.1(y), z) -> g.0(f.1-1-1(x, y, z)) f.0-0-0(x, y, g.0(z)) -> g.0(f.0-0-0(x, y, z)) f.0-0-1(x, y, g.1(z)) -> g.0(f.0-0-1(x, y, z)) f.0-1-0(x, y, g.0(z)) -> g.0(f.0-1-0(x, y, z)) f.0-1-1(x, y, g.1(z)) -> g.0(f.0-1-1(x, y, z)) f.1-0-0(x, y, g.0(z)) -> g.0(f.1-0-0(x, y, z)) f.1-0-1(x, y, g.1(z)) -> g.0(f.1-0-1(x, y, z)) f.1-1-0(x, y, g.0(z)) -> g.0(f.1-1-0(x, y, z)) f.1-1-1(x, y, g.1(z)) -> g.0(f.1-1-1(x, y, z)) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-1-0(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(g.0(x_1)) = x_1 POL(g.1(x_1)) = x_1 ---------------------------------------- (46) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (48) YES