/export/starexec/sandbox/solver/bin/starexec_run_ttt2 /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem: f(a(),f(f(a(),x),a())) -> f(f(a(),f(a(),x)),a()) Proof: Extended Uncurrying Processor: application symbol: f symbol table: a ==> a0/0 a1/1 a2/2 uncurry-rules: f(a1(x2),x3) -> a2(x2,x3) f(a0(),x2) -> a1(x2) eta-rules: f(f(a(),f(f(a(),x),a())),x1) -> f(f(f(a(),f(a(),x)),a()),x1) problem: a1(a2(x,a0())) -> a2(a1(x),a0()) a2(a2(x,a0()),x1) -> f(a2(a1(x),a0()),x1) f(a1(x2),x3) -> a2(x2,x3) f(a0(),x2) -> a1(x2) Matrix Interpretation Processor: dim=1 interpretation: [a2](x0, x1) = x0 + 2x1 + 5, [f](x0, x1) = x0 + 2x1 + 2, [a1](x0) = x0 + 3, [a0] = 7 orientation: a1(a2(x,a0())) = x + 22 >= x + 22 = a2(a1(x),a0()) a2(a2(x,a0()),x1) = x + 2x1 + 24 >= x + 2x1 + 24 = f(a2(a1(x),a0()),x1) f(a1(x2),x3) = x2 + 2x3 + 5 >= x2 + 2x3 + 5 = a2(x2,x3) f(a0(),x2) = 2x2 + 9 >= x2 + 3 = a1(x2) problem: a1(a2(x,a0())) -> a2(a1(x),a0()) a2(a2(x,a0()),x1) -> f(a2(a1(x),a0()),x1) f(a1(x2),x3) -> a2(x2,x3) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [1 0 0] [0] [a2](x0, x1) = [0 0 0]x0 + [0 0 0]x1 + [0] [1 0 0] [0 0 0] [1], [1 1 0] [1 0 0] [f](x0, x1) = [0 0 0]x0 + [0 0 0]x1 [1 1 0] [0 0 0] , [1 0 0] [0] [a1](x0) = [0 0 0]x0 + [1] [1 0 0] [1], [0] [a0] = [0] [0] orientation: [1 0 0] [0] [1 0 0] [0] a1(a2(x,a0())) = [0 0 0]x + [1] >= [0 0 0]x + [0] = a2(a1(x),a0()) [1 0 0] [1] [1 0 0] [1] [1 0 0] [1 0 0] [0] [1 0 0] [1 0 0] a2(a2(x,a0()),x1) = [0 0 0]x + [0 0 0]x1 + [0] >= [0 0 0]x + [0 0 0]x1 = f(a2(a1(x),a0()),x1) [1 0 0] [0 0 0] [1] [1 0 0] [0 0 0] [1 0 0] [1 0 0] [1] [1 0 0] [1 0 0] [0] f(a1(x2),x3) = [0 0 0]x2 + [0 0 0]x3 + [0] >= [0 0 0]x2 + [0 0 0]x3 + [0] = a2(x2,x3) [1 0 0] [0 0 0] [1] [1 0 0] [0 0 0] [1] problem: a1(a2(x,a0())) -> a2(a1(x),a0()) a2(a2(x,a0()),x1) -> f(a2(a1(x),a0()),x1) Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [1 0 1] [a2](x0, x1) = [0 1 0]x0 + [0 1 1]x1 [0 1 0] [1 0 0] , [1 0 0] [1 0 0] [f](x0, x1) = [0 1 0]x0 + [0 1 0]x1 [0 0 0] [0 0 0] , [1 1 0] [a1](x0) = [0 1 0]x0 [0 0 1] , [0] [a0] = [1] [0] orientation: [1 1 1] [1] [1 1 1] [0] a1(a2(x,a0())) = [0 1 0]x + [1] >= [0 1 0]x + [1] = a2(a1(x),a0()) [0 1 0] [0] [0 1 0] [0] [1 1 1] [1 0 1] [0] [1 1 1] [1 0 0] [0] a2(a2(x,a0()),x1) = [0 1 0]x + [0 1 1]x1 + [1] >= [0 1 0]x + [0 1 0]x1 + [1] = f(a2(a1(x),a0()),x1) [0 1 0] [1 0 0] [1] [0 0 0] [0 0 0] [0] problem: a2(a2(x,a0()),x1) -> f(a2(a1(x),a0()),x1) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [1 0 0] [0] [a2](x0, x1) = [0 0 0]x0 + [0 0 0]x1 + [1] [1 0 0] [0 0 0] [0], [1 0 0] [1 0 0] [f](x0, x1) = [0 0 0]x0 + [0 0 0]x1 [0 0 0] [0 0 0] , [1 0 0] [a1](x0) = [0 0 0]x0 [0 0 0] , [0] [a0] = [0] [0] orientation: [1 1 0] [1 0 0] [1] [1 0 0] [1 0 0] a2(a2(x,a0()),x1) = [0 0 0]x + [0 0 0]x1 + [1] >= [0 0 0]x + [0 0 0]x1 = f(a2(a1(x),a0()),x1) [1 1 0] [0 0 0] [0] [0 0 0] [0 0 0] problem: Qed