/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 0] inf(_0) -> inf(s(_0)) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {_0->s(_0)}. We have r|p = inf(s(_0)) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = inf(_0) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 4 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [4 DP problems]: ## DP problem: Dependency pairs = [length^#(cons(_0,_1)) -> length^#(_1)] TRS = {eq(0,0) -> true, eq(s(_0),s(_1)) -> eq(_0,_1), eq(_0,_1) -> false, inf(_0) -> cons(_0,inf(s(_0))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,take(_0,_2)), length(nil) -> 0, length(cons(_0,_1)) -> s(length(_1))} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## DP problem: Dependency pairs = [take^#(s(_0),cons(_1,_2)) -> take^#(_0,_2)] TRS = {eq(0,0) -> true, eq(s(_0),s(_1)) -> eq(_0,_1), eq(_0,_1) -> false, inf(_0) -> cons(_0,inf(s(_0))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,take(_0,_2)), length(nil) -> 0, length(cons(_0,_1)) -> s(length(_1))} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## DP problem: Dependency pairs = [inf^#(_0) -> inf^#(s(_0))] TRS = {eq(0,0) -> true, eq(s(_0),s(_1)) -> eq(_0,_1), eq(_0,_1) -> false, inf(_0) -> cons(_0,inf(s(_0))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,take(_0,_2)), length(nil) -> 0, length(cons(_0,_1)) -> s(length(_1))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [eq^#(s(_0),s(_1)) -> eq^#(_0,_1)] TRS = {eq(0,0) -> true, eq(s(_0),s(_1)) -> eq(_0,_1), eq(_0,_1) -> false, inf(_0) -> cons(_0,inf(s(_0))), take(0,_0) -> nil, take(s(_0),cons(_1,_2)) -> cons(_1,take(_0,_2)), length(nil) -> 0, length(cons(_0,_1)) -> s(length(_1))} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## A DP problem could not be proved finite. ## Now, we try to prove that this problem is infinite. ## Trying to find a loop (forward=true, backward=true, max=20) # max_depth=20, unfold_variables=false: # Iteration 0: success, found a loop, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = inf^#(_0) -> inf^#(s(_0)) [trans] is in U_IR^0. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 2