/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 0] zeros -> zeros Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {}. We have r|p = zeros and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = zeros loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 3 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [3 DP problems]: ## DP problem: Dependency pairs = [zeros^# -> zeros^#] TRS = {incr(nil) -> nil, incr(cons(_0,_1)) -> cons(s(_0),incr(_1)), adx(nil) -> nil, adx(cons(_0,_1)) -> incr(cons(_0,adx(_1))), nats -> adx(zeros), zeros -> cons(0,zeros), head(cons(_0,_1)) -> _0, tail(cons(_0,_1)) -> _1} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [adx^#(cons(_0,_1)) -> adx^#(_1)] TRS = {incr(nil) -> nil, incr(cons(_0,_1)) -> cons(s(_0),incr(_1)), adx(nil) -> nil, adx(cons(_0,_1)) -> incr(cons(_0,adx(_1))), nats -> adx(zeros), zeros -> cons(0,zeros), head(cons(_0,_1)) -> _0, tail(cons(_0,_1)) -> _1} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## DP problem: Dependency pairs = [incr^#(cons(_0,_1)) -> incr^#(_1)] TRS = {incr(nil) -> nil, incr(cons(_0,_1)) -> cons(s(_0),incr(_1)), adx(nil) -> nil, adx(cons(_0,_1)) -> incr(cons(_0,adx(_1))), nats -> adx(zeros), zeros -> cons(0,zeros), head(cons(_0,_1)) -> _0, tail(cons(_0,_1)) -> _1} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## A DP problem could not be proved finite. ## Now, we try to prove that this problem is infinite. ## Trying to find a loop (forward=true, backward=false, max=-1) # max_depth=3, unfold_variables=false: # Iteration 0: success, found a loop, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = zeros^# -> zeros^# [trans] is in U_IR^0. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 2