/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S X:S Y:S) (RULES div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ) Problem 1: Innermost Equivalent Processor: -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: DIV(s(X:S),s(Y:S)) -> DIV(minus(X:S,Y:S),s(Y:S)) DIV(s(X:S),s(Y:S)) -> GEQ(X:S,Y:S) DIV(s(X:S),s(Y:S)) -> IF(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) DIV(s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) GEQ(s(X:S),s(Y:S)) -> GEQ(X:S,Y:S) MINUS(s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) Problem 1: SCC Processor: -> Pairs: DIV(s(X:S),s(Y:S)) -> DIV(minus(X:S,Y:S),s(Y:S)) DIV(s(X:S),s(Y:S)) -> GEQ(X:S,Y:S) DIV(s(X:S),s(Y:S)) -> IF(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) DIV(s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) GEQ(s(X:S),s(Y:S)) -> GEQ(X:S,Y:S) MINUS(s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) ->->-> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->->Cycle: ->->-> Pairs: GEQ(s(X:S),s(Y:S)) -> GEQ(X:S,Y:S) ->->-> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->->Cycle: ->->-> Pairs: DIV(s(X:S),s(Y:S)) -> DIV(minus(X:S,Y:S),s(Y:S)) ->->-> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(X:S),s(Y:S)) -> MINUS(X:S,Y:S) -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: GEQ(s(X:S),s(Y:S)) -> GEQ(X:S,Y:S) -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->Projection: pi(GEQ) = 1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: DIV(s(X:S),s(Y:S)) -> DIV(minus(X:S,Y:S),s(Y:S)) -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) -> Usable rules: minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [div](X1,X2) = 0 [geq](X1,X2) = 0 [if](X1,X2,X3) = 0 [minus](X1,X2) = 1 [0] = 0 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2 [true] = 0 [DIV](X1,X2) = 2.X1 [GEQ](X1,X2) = 0 [IF](X1,X2,X3) = 0 [MINUS](X1,X2) = 0 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: div(0,s(Y:S)) -> 0 div(s(X:S),s(Y:S)) -> if(geq(X:S,Y:S),s(div(minus(X:S,Y:S),s(Y:S))),0) geq(0,s(Y:S)) -> ffalse geq(s(X:S),s(Y:S)) -> geq(X:S,Y:S) geq(X:S,0) -> ttrue if(ffalse,X:S,Y:S) -> Y:S if(ttrue,X:S,Y:S) -> X:S minus(0,Y:S) -> 0 minus(s(X:S),s(Y:S)) -> minus(X:S,Y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite.