/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 0] nats(_0) -> nats(s(_0)) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {_0->s(_0)}. We have r|p = nats(s(_0)) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = nats(_0) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 3 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [3 DP problems]: ## DP problem: Dependency pairs = [nats^#(_0) -> nats^#(s(_0))] TRS = {filter(cons(_0,_1),0,_2) -> cons(0,filter(_1,_2,_2)), filter(cons(_0,_1),s(_2),_3) -> cons(_0,filter(_1,_2,_3)), sieve(cons(0,_0)) -> cons(0,sieve(_0)), sieve(cons(s(_0),_1)) -> cons(s(_0),sieve(filter(_1,_0,_0))), nats(_0) -> cons(_0,nats(s(_0))), zprimes -> sieve(nats(s(s(0))))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [sieve^#(cons(0,_0)) -> sieve^#(_0), sieve^#(cons(s(_0),_1)) -> sieve^#(filter(_1,_0,_0))] TRS = {filter(cons(_0,_1),0,_2) -> cons(0,filter(_1,_2,_2)), filter(cons(_0,_1),s(_2),_3) -> cons(_0,filter(_1,_2,_3)), sieve(cons(0,_0)) -> cons(0,sieve(_0)), sieve(cons(s(_0),_1)) -> cons(s(_0),sieve(filter(_1,_0,_0))), nats(_0) -> cons(_0,nats(s(_0))), zprimes -> sieve(nats(s(s(0))))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [filter^#(cons(_0,_1),0,_2) -> filter^#(_1,_2,_2), filter^#(cons(_0,_1),s(_2),_3) -> filter^#(_1,_2,_3)] TRS = {filter(cons(_0,_1),0,_2) -> cons(0,filter(_1,_2,_2)), filter(cons(_0,_1),s(_2),_3) -> cons(_0,filter(_1,_2,_3)), sieve(cons(0,_0)) -> cons(0,sieve(_0)), sieve(cons(s(_0),_1)) -> cons(s(_0),sieve(filter(_1,_0,_0))), nats(_0) -> cons(_0,nats(s(_0))), zprimes -> sieve(nats(s(s(0))))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## Some DP problems could not be proved finite. ## Now, we try to prove that one of these problems is infinite. ## Trying to find a loop (forward=true, backward=false, max=-1) # max_depth=4, unfold_variables=false: # Iteration 0: success, found a loop, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = nats^#(_0) -> nats^#(s(_0)) [trans] is in U_IR^0. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 22