/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 3 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [3 DP problems]: ## DP problem: Dependency pairs = [msort^#(.(_0,_1)) -> msort^#(del(min(_0,_1),.(_0,_1)))] TRS = {msort(nil) -> nil, msort(.(_0,_1)) -> .(min(_0,_1),msort(del(min(_0,_1),.(_0,_1)))), min(_0,nil) -> _0, min(_0,.(_1,_2)) -> if(<=(_0,_1),min(_0,_2),min(_1,_2)), del(_0,nil) -> nil, del(_0,.(_1,_2)) -> if(=(_0,_1),_2,.(_1,del(_0,_2)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {<=:[0, 1], if:[0], min:[0, 1], del:[0], =:[0], msort:[0], .:[0, 1], msort^#:[0]} and the precedence: min > [<=, if], msort > [<=, =, min, nil, msort^#, if, ., del], . > [<=, =, min, nil, msort^#, if, del], del > [=, nil, if] This DP problem is finite. ## DP problem: Dependency pairs = [del^#(_0,.(_1,_2)) -> del^#(_0,_2)] TRS = {msort(nil) -> nil, msort(.(_0,_1)) -> .(min(_0,_1),msort(del(min(_0,_1),.(_0,_1)))), min(_0,nil) -> _0, min(_0,.(_1,_2)) -> if(<=(_0,_1),min(_0,_2),min(_1,_2)), del(_0,nil) -> nil, del(_0,.(_1,_2)) -> if(=(_0,_1),_2,.(_1,del(_0,_2)))} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## DP problem: Dependency pairs = [min^#(_0,.(_1,_2)) -> min^#(_0,_2), min^#(_0,.(_1,_2)) -> min^#(_1,_2)] TRS = {msort(nil) -> nil, msort(.(_0,_1)) -> .(min(_0,_1),msort(del(min(_0,_1),.(_0,_1)))), min(_0,nil) -> _0, min(_0,.(_1,_2)) -> if(<=(_0,_1),min(_0,_2),min(_1,_2)), del(_0,nil) -> nil, del(_0,.(_1,_2)) -> if(=(_0,_1),_2,.(_1,del(_0,_2)))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {<=:[0, 1], if:[0], min:[0, 1], del:[0], =:[0], msort:[0], .:[0, 1], min^#:[0, 1]} and the precedence: min > [<=, if], msort > [<=, =, min, nil, if, ., del, min^#], . > [<=, =, min, nil, if, del, min^#], del > [=, nil, if] This DP problem is finite. ## All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 0