/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S x:S y:S z:S) (RULES =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue del(.(x:S,.(y:S,z:S))) -> f(=(x:S,y:S),x:S,y:S,z:S) f(ffalse,x:S,y:S,z:S) -> .(x:S,del(.(y:S,z:S))) f(ttrue,x:S,y:S,z:S) -> del(.(y:S,z:S)) ) Problem 1: Innermost Equivalent Processor: -> Rules: =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue del(.(x:S,.(y:S,z:S))) -> f(=(x:S,y:S),x:S,y:S,z:S) f(ffalse,x:S,y:S,z:S) -> .(x:S,del(.(y:S,z:S))) f(ttrue,x:S,y:S,z:S) -> del(.(y:S,z:S)) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: DEL(.(x:S,.(y:S,z:S))) -> =#(x:S,y:S) DEL(.(x:S,.(y:S,z:S))) -> F(=(x:S,y:S),x:S,y:S,z:S) F(ffalse,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) F(ttrue,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) -> Rules: =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue del(.(x:S,.(y:S,z:S))) -> f(=(x:S,y:S),x:S,y:S,z:S) f(ffalse,x:S,y:S,z:S) -> .(x:S,del(.(y:S,z:S))) f(ttrue,x:S,y:S,z:S) -> del(.(y:S,z:S)) Problem 1: SCC Processor: -> Pairs: DEL(.(x:S,.(y:S,z:S))) -> =#(x:S,y:S) DEL(.(x:S,.(y:S,z:S))) -> F(=(x:S,y:S),x:S,y:S,z:S) F(ffalse,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) F(ttrue,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) -> Rules: =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue del(.(x:S,.(y:S,z:S))) -> f(=(x:S,y:S),x:S,y:S,z:S) f(ffalse,x:S,y:S,z:S) -> .(x:S,del(.(y:S,z:S))) f(ttrue,x:S,y:S,z:S) -> del(.(y:S,z:S)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: DEL(.(x:S,.(y:S,z:S))) -> F(=(x:S,y:S),x:S,y:S,z:S) F(ffalse,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) F(ttrue,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) ->->-> Rules: =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue del(.(x:S,.(y:S,z:S))) -> f(=(x:S,y:S),x:S,y:S,z:S) f(ffalse,x:S,y:S,z:S) -> .(x:S,del(.(y:S,z:S))) f(ttrue,x:S,y:S,z:S) -> del(.(y:S,z:S)) Problem 1: Reduction Pairs Processor: -> Pairs: DEL(.(x:S,.(y:S,z:S))) -> F(=(x:S,y:S),x:S,y:S,z:S) F(ffalse,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) F(ttrue,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) -> Rules: =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue del(.(x:S,.(y:S,z:S))) -> f(=(x:S,y:S),x:S,y:S,z:S) f(ffalse,x:S,y:S,z:S) -> .(x:S,del(.(y:S,z:S))) f(ttrue,x:S,y:S,z:S) -> del(.(y:S,z:S)) -> Usable rules: =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [=](X1,X2) = 2.X1 + 2.X2 + 2 [del](X) = 0 [f](X1,X2,X3,X4) = 0 [.](X1,X2) = 2.X1 + 2.X2 + 2 [and](X1,X2) = X2 + 2 [fSNonEmpty] = 0 [false] = 0 [nil] = 2 [true] = 2 [u] = 2 [v] = 1 [=#](X1,X2) = 0 [DEL](X) = X [F](X1,X2,X3,X4) = X2 + 2.X3 + 2.X4 + 2 Problem 1: SCC Processor: -> Pairs: F(ffalse,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) F(ttrue,x:S,y:S,z:S) -> DEL(.(y:S,z:S)) -> Rules: =(.(x:S,y:S),.(u,v)) -> and(=(x:S,u),=(y:S,v)) =(.(x:S,y:S),nil) -> ffalse =(nil,.(y:S,z:S)) -> ffalse =(nil,nil) -> ttrue del(.(x:S,.(y:S,z:S))) -> f(=(x:S,y:S),x:S,y:S,z:S) f(ffalse,x:S,y:S,z:S) -> .(x:S,del(.(y:S,z:S))) f(ttrue,x:S,y:S,z:S) -> del(.(y:S,z:S)) ->Strongly Connected Components: There is no strongly connected component The problem is finite.