/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) MNOCProof [EQUIVALENT, 0 ms] (10) QDP (11) NonTerminationLoopProof [COMPLETE, 76 ms] (12) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(f(a, x), y), z) -> f(f(x, z), f(y, z)) f(f(b, x), y) -> x f(c, y) -> y Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(f(a, x), y), z) -> f(f(x, z), f(y, z)) f(f(b, x), y) -> x f(c, y) -> y The set Q consists of the following terms: f(f(f(a, x0), x1), x2) f(f(b, x0), x1) f(c, x0) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(f(a, x), y), z) -> F(f(x, z), f(y, z)) F(f(f(a, x), y), z) -> F(x, z) F(f(f(a, x), y), z) -> F(y, z) The TRS R consists of the following rules: f(f(f(a, x), y), z) -> f(f(x, z), f(y, z)) f(f(b, x), y) -> x f(c, y) -> y The set Q consists of the following terms: f(f(f(a, x0), x1), x2) f(f(b, x0), x1) f(c, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(f(f(a, x), y), z) -> F(x, z) we obtained the following new rules [LPAR04]: (F(f(f(a, f(f(a, y_0), y_1)), x1), x2) -> F(f(f(a, y_0), y_1), x2),F(f(f(a, f(f(a, y_0), y_1)), x1), x2) -> F(f(f(a, y_0), y_1), x2)) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(f(a, x), y), z) -> F(f(x, z), f(y, z)) F(f(f(a, x), y), z) -> F(y, z) F(f(f(a, f(f(a, y_0), y_1)), x1), x2) -> F(f(f(a, y_0), y_1), x2) The TRS R consists of the following rules: f(f(f(a, x), y), z) -> f(f(x, z), f(y, z)) f(f(b, x), y) -> x f(c, y) -> y The set Q consists of the following terms: f(f(f(a, x0), x1), x2) f(f(b, x0), x1) f(c, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(f(f(a, x), y), z) -> F(y, z) we obtained the following new rules [LPAR04]: (F(f(f(a, x0), f(f(a, y_0), y_1)), x2) -> F(f(f(a, y_0), y_1), x2),F(f(f(a, x0), f(f(a, y_0), y_1)), x2) -> F(f(f(a, y_0), y_1), x2)) (F(f(f(a, x0), f(f(a, f(f(a, y_0), y_1)), y_2)), x2) -> F(f(f(a, f(f(a, y_0), y_1)), y_2), x2),F(f(f(a, x0), f(f(a, f(f(a, y_0), y_1)), y_2)), x2) -> F(f(f(a, f(f(a, y_0), y_1)), y_2), x2)) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(f(a, x), y), z) -> F(f(x, z), f(y, z)) F(f(f(a, f(f(a, y_0), y_1)), x1), x2) -> F(f(f(a, y_0), y_1), x2) F(f(f(a, x0), f(f(a, y_0), y_1)), x2) -> F(f(f(a, y_0), y_1), x2) F(f(f(a, x0), f(f(a, f(f(a, y_0), y_1)), y_2)), x2) -> F(f(f(a, f(f(a, y_0), y_1)), y_2), x2) The TRS R consists of the following rules: f(f(f(a, x), y), z) -> f(f(x, z), f(y, z)) f(f(b, x), y) -> x f(c, y) -> y The set Q consists of the following terms: f(f(f(a, x0), x1), x2) f(f(b, x0), x1) f(c, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(f(a, x), y), z) -> F(f(x, z), f(y, z)) F(f(f(a, f(f(a, y_0), y_1)), x1), x2) -> F(f(f(a, y_0), y_1), x2) F(f(f(a, x0), f(f(a, y_0), y_1)), x2) -> F(f(f(a, y_0), y_1), x2) F(f(f(a, x0), f(f(a, f(f(a, y_0), y_1)), y_2)), x2) -> F(f(f(a, f(f(a, y_0), y_1)), y_2), x2) The TRS R consists of the following rules: f(f(f(a, x), y), z) -> f(f(x, z), f(y, z)) f(f(b, x), y) -> x f(c, y) -> y Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) NonTerminationLoopProof (COMPLETE) We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. Found a loop by narrowing to the left: s = F(f(f(a, f(a, x0)), y), f(c, f(f(a, y_0), y_1))) evaluates to t =F(f(f(a, y_0), y_1), f(y, f(f(a, y_0), y_1))) Thus s starts an infinite chain as s semiunifies with t with the following substitutions: * Matcher: [ ] * Semiunifier: [y / c, y_0 / f(a, x0), y_1 / c] -------------------------------------------------------------------------------- Rewriting sequence F(f(f(a, f(a, x0)), c), f(c, f(f(a, f(a, x0)), c))) -> F(f(f(a, f(a, x0)), c), f(f(a, f(a, x0)), c)) with rule f(c, y') -> y' at position [1] and matcher [y' / f(f(a, f(a, x0)), c)] F(f(f(a, f(a, x0)), c), f(f(a, f(a, x0)), c)) -> F(f(f(a, x0), f(f(a, f(a, x0)), c)), f(c, f(f(a, f(a, x0)), c))) with rule F(f(f(a, x), y), z) -> F(f(x, z), f(y, z)) at position [] and matcher [x / f(a, x0), y / c, z / f(f(a, f(a, x0)), c)] F(f(f(a, x0), f(f(a, f(a, x0)), c)), f(c, f(f(a, f(a, x0)), c))) -> F(f(f(a, f(a, x0)), c), f(c, f(f(a, f(a, x0)), c))) with rule F(f(f(a, x0), f(f(a, y_0), y_1)), x2) -> F(f(f(a, y_0), y_1), x2) Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence All these steps are and every following step will be a correct step w.r.t to Q. ---------------------------------------- (12) NO