/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 1 initial DP problem to solve. ## First, we try to decompose this problem into smaller problems. ## Round 1 [1 DP problem]: ## DP problem: Dependency pairs = [f^#(c(s(_0),_1)) -> f^#(c(_0,s(_1))), g^#(c(s(_0),s(_1))) -> f^#(c(_0,_1)), g^#(c(_0,s(_1))) -> g^#(c(s(_0),_1)), f^#(c(s(_0),s(_1))) -> g^#(c(_0,_1))] TRS = {f(c(s(_0),_1)) -> f(c(_0,s(_1))), f(c(s(_0),s(_1))) -> g(c(_0,_1)), g(c(_0,s(_1))) -> g(c(s(_0),_1)), g(c(s(_0),s(_1))) -> f(c(_0,_1))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Successfully decomposed the DP problem into 2 smaller problem(s) to solve! ## Round 2 [2 DP problems]: ## DP problem: Dependency pairs = [g^#(c(_0,s(_1))) -> g^#(c(s(_0),_1))] TRS = {f(c(s(_0),_1)) -> f(c(_0,s(_1))), f(c(s(_0),s(_1))) -> g(c(_0,_1)), g(c(_0,s(_1))) -> g(c(s(_0),_1)), g(c(s(_0),s(_1))) -> f(c(_0,_1))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## DP problem: Dependency pairs = [f^#(c(s(_0),_1)) -> f^#(c(_0,s(_1)))] TRS = {f(c(s(_0),_1)) -> f(c(_0,s(_1))), f(c(s(_0),s(_1))) -> g(c(_0,_1)), g(c(_0,s(_1))) -> g(c(s(_0),_1)), g(c(s(_0),s(_1))) -> f(c(_0,_1))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## Some DP problems could not be proved finite. ## Now, we try to prove that one of these problems is infinite. ## Could not solve the following DP problems: 1: Dependency pairs = [g^#(c(_0,s(_1))) -> g^#(c(s(_0),_1))] TRS = {f(c(s(_0),_1)) -> f(c(_0,s(_1))), f(c(s(_0),s(_1))) -> g(c(_0,_1)), g(c(_0,s(_1))) -> g(c(s(_0),_1)), g(c(s(_0),s(_1))) -> f(c(_0,_1))} 2: Dependency pairs = [f^#(c(s(_0),_1)) -> f^#(c(_0,s(_1)))] TRS = {f(c(s(_0),_1)) -> f(c(_0,s(_1))), f(c(s(_0),s(_1))) -> g(c(_0,_1)), g(c(_0,s(_1))) -> g(c(s(_0),_1)), g(c(s(_0),s(_1))) -> f(c(_0,_1))} Hence, could not prove (non)termination of the TRS under analysis. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 428