/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 3 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [3 DP problems]: ## DP problem: Dependency pairs = [mod^#(s(_0),s(_1)) -> if_mod^#(le(_1,_0),s(_0),s(_1)), if_mod^#(true,s(_0),s(_1)) -> mod^#(minus(_0,_1),s(_1))] TRS = {le(0,_0) -> true, le(s(_0),0) -> false, le(s(_0),s(_1)) -> le(_0,_1), minus(_0,0) -> _0, minus(s(_0),s(_1)) -> minus(_0,_1), mod(0,_0) -> 0, mod(s(_0),0) -> 0, mod(s(_0),s(_1)) -> if_mod(le(_1,_0),s(_0),s(_1)), if_mod(true,s(_0),s(_1)) -> mod(minus(_0,_1),s(_1)), if_mod(false,s(_0),s(_1)) -> s(_0)} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {if_mod:[1], minus:[0], mod:[0], s:[0], le:[0, 1], mod^#:[0], if_mod^#:[1]} and the precedence: 0 > [true], mod > [if_mod], mod^# > [if_mod^#], s > [0, if_mod^#, if_mod, mod, false, minus, mod^#, true] This DP problem is finite. ## DP problem: Dependency pairs = [minus^#(s(_0),s(_1)) -> minus^#(_0,_1)] TRS = {le(0,_0) -> true, le(s(_0),0) -> false, le(s(_0),s(_1)) -> le(_0,_1), minus(_0,0) -> _0, minus(s(_0),s(_1)) -> minus(_0,_1), mod(0,_0) -> 0, mod(s(_0),0) -> 0, mod(s(_0),s(_1)) -> if_mod(le(_1,_0),s(_0),s(_1)), if_mod(true,s(_0),s(_1)) -> mod(minus(_0,_1),s(_1)), if_mod(false,s(_0),s(_1)) -> s(_0)} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## DP problem: Dependency pairs = [le^#(s(_0),s(_1)) -> le^#(_0,_1)] TRS = {le(0,_0) -> true, le(s(_0),0) -> false, le(s(_0),s(_1)) -> le(_0,_1), minus(_0,0) -> _0, minus(s(_0),s(_1)) -> minus(_0,_1), mod(0,_0) -> 0, mod(s(_0),0) -> 0, mod(s(_0),s(_1)) -> if_mod(le(_1,_0),s(_0),s(_1)), if_mod(true,s(_0),s(_1)) -> mod(minus(_0,_1),s(_1)), if_mod(false,s(_0),s(_1)) -> s(_0)} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 0