/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR v_NonEmpty:S x:S y:S) (RULES gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ) Problem 1: Innermost Equivalent Processor: -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) GCD(s(x:S),s(y:S)) -> LE(y:S,x:S) IF_GCD(ffalse,s(x:S),s(y:S)) -> GCD(minus(y:S,x:S),s(x:S)) IF_GCD(ffalse,s(x:S),s(y:S)) -> MINUS(y:S,x:S) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> MINUS(x:S,y:S) IF_MINUS(ffalse,s(x:S),y:S) -> MINUS(x:S,y:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),y:S) -> IF_MINUS(le(s(x:S),y:S),s(x:S),y:S) MINUS(s(x:S),y:S) -> LE(s(x:S),y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) Problem 1: SCC Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) GCD(s(x:S),s(y:S)) -> LE(y:S,x:S) IF_GCD(ffalse,s(x:S),s(y:S)) -> GCD(minus(y:S,x:S),s(x:S)) IF_GCD(ffalse,s(x:S),s(y:S)) -> MINUS(y:S,x:S) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> MINUS(x:S,y:S) IF_MINUS(ffalse,s(x:S),y:S) -> MINUS(x:S,y:S) LE(s(x:S),s(y:S)) -> LE(x:S,y:S) MINUS(s(x:S),y:S) -> IF_MINUS(le(s(x:S),y:S),s(x:S),y:S) MINUS(s(x:S),y:S) -> LE(s(x:S),y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->->Cycle: ->->-> Pairs: IF_MINUS(ffalse,s(x:S),y:S) -> MINUS(x:S,y:S) MINUS(s(x:S),y:S) -> IF_MINUS(le(s(x:S),y:S),s(x:S),y:S) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->->Cycle: ->->-> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) IF_GCD(ffalse,s(x:S),s(y:S)) -> GCD(minus(y:S,x:S),s(x:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) ->->-> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: LE(s(x:S),s(y:S)) -> LE(x:S,y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->Projection: pi(LE) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: IF_MINUS(ffalse,s(x:S),y:S) -> MINUS(x:S,y:S) MINUS(s(x:S),y:S) -> IF_MINUS(le(s(x:S),y:S),s(x:S),y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->Projection: pi(IF_MINUS) = 2 pi(MINUS) = 1 Problem 1.2: SCC Processor: -> Pairs: MINUS(s(x:S),y:S) -> IF_MINUS(le(s(x:S),y:S),s(x:S),y:S) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: GCD(s(x:S),s(y:S)) -> IF_GCD(le(y:S,x:S),s(x:S),s(y:S)) IF_GCD(ffalse,s(x:S),s(y:S)) -> GCD(minus(y:S,x:S),s(x:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) -> Usable rules: if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [gcd](X1,X2) = 0 [if_gcd](X1,X2,X3) = 0 [if_minus](X1,X2,X3) = 2.X1 + 2.X2 [le](X1,X2) = 0 [minus](X1,X2) = 2.X1 [0] = 1 [fSNonEmpty] = 0 [false] = 0 [s](X) = 2.X + 1 [true] = 0 [GCD](X1,X2) = 2.X1 + 2.X2 + 2 [IF_GCD](X1,X2,X3) = X1 + 2.X2 + 2.X3 + 1 [IF_MINUS](X1,X2,X3) = 0 [LE](X1,X2) = 0 [MINUS](X1,X2) = 0 Problem 1.3: SCC Processor: -> Pairs: IF_GCD(ffalse,s(x:S),s(y:S)) -> GCD(minus(y:S,x:S),s(x:S)) IF_GCD(ttrue,s(x:S),s(y:S)) -> GCD(minus(x:S,y:S),s(y:S)) -> Rules: gcd(0,y:S) -> y:S gcd(s(x:S),0) -> s(x:S) gcd(s(x:S),s(y:S)) -> if_gcd(le(y:S,x:S),s(x:S),s(y:S)) if_gcd(ffalse,s(x:S),s(y:S)) -> gcd(minus(y:S,x:S),s(x:S)) if_gcd(ttrue,s(x:S),s(y:S)) -> gcd(minus(x:S,y:S),s(y:S)) if_minus(ffalse,s(x:S),y:S) -> s(minus(x:S,y:S)) if_minus(ttrue,s(x:S),y:S) -> 0 le(0,y:S) -> ttrue le(s(x:S),0) -> ffalse le(s(x:S),s(y:S)) -> le(x:S,y:S) minus(0,y:S) -> 0 minus(s(x:S),y:S) -> if_minus(le(s(x:S),y:S),s(x:S),y:S) ->Strongly Connected Components: There is no strongly connected component The problem is finite.