/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 3 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [3 DP problems]: ## DP problem: Dependency pairs = [quot^#(s(_0),s(_1)) -> quot^#(minus(_0,_1),s(_1))] TRS = {minus(_0,0) -> _0, minus(s(_0),s(_1)) -> minus(_0,_1), quot(0,s(_0)) -> 0, quot(s(_0),s(_1)) -> s(quot(minus(_0,_1),s(_1))), plus(0,_0) -> _0, plus(s(_0),_1) -> s(plus(_0,_1)), minus(minus(_0,_1),_2) -> minus(_0,plus(_1,_2))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {quot:[0, 1], plus:[0, 1], s:[0], minus:[0], quot^#:[0, 1]} and the precedence: quot > [s, minus], plus > [s, minus], s > [minus] This DP problem is finite. ## DP problem: Dependency pairs = [minus^#(s(_0),s(_1)) -> minus^#(_0,_1), minus^#(minus(_0,_1),_2) -> minus^#(_0,plus(_1,_2))] TRS = {minus(_0,0) -> _0, minus(s(_0),s(_1)) -> minus(_0,_1), quot(0,s(_0)) -> 0, quot(s(_0),s(_1)) -> s(quot(minus(_0,_1),s(_1))), plus(0,_0) -> _0, plus(s(_0),_1) -> s(plus(_0,_1)), minus(minus(_0,_1),_2) -> minus(_0,plus(_1,_2))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {quot:[0, 1], plus:[0, 1], s:[0], minus:[0], minus^#:[0]} and the precedence: quot > [s, minus, minus^#], plus > [s, minus, minus^#], s > [minus, minus^#], minus > [minus^#] This DP problem is finite. ## DP problem: Dependency pairs = [plus^#(s(_0),_1) -> plus^#(_0,_1)] TRS = {minus(_0,0) -> _0, minus(s(_0),s(_1)) -> minus(_0,_1), quot(0,s(_0)) -> 0, quot(s(_0),s(_1)) -> s(quot(minus(_0,_1),s(_1))), plus(0,_0) -> _0, plus(s(_0),_1) -> s(plus(_0,_1)), minus(minus(_0,_1),_2) -> minus(_0,plus(_1,_2))} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 0