/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 1 initial DP problem to solve. ## First, we try to decompose this problem into smaller problems. ## Round 1 [1 DP problem]: ## DP problem: Dependency pairs = [app^#(app(app(compose,_0),_1),_2) -> app^#(_1,app(_0,_2)), app^#(app(app(compose,_0),_1),_2) -> app^#(_0,_2), app^#(reverse,_0) -> app^#(app(reverse2,_0),nil), app^#(app(reverse2,app(app(cons,_0),_1)),_2) -> app^#(app(reverse2,_1),app(app(cons,_0),_2)), app^#(app(reverse2,app(app(cons,_0),_1)),_2) -> app^#(app(cons,_0),_2)] TRS = {app(app(app(compose,_0),_1),_2) -> app(_1,app(_0,_2)), app(reverse,_0) -> app(app(reverse2,_0),nil), app(app(reverse2,nil),_0) -> _0, app(app(reverse2,app(app(cons,_0),_1)),_2) -> app(app(reverse2,_1),app(app(cons,_0),_2)), app(hd,app(app(cons,_0),_1)) -> _0, app(tl,app(app(cons,_0),_1)) -> _1, last -> app(app(compose,hd),reverse), init -> app(app(compose,reverse),app(app(compose,tl),reverse))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Successfully decomposed the DP problem into 1 smaller problem to solve! ## Round 2 [1 DP problem]: ## DP problem: Dependency pairs = [app^#(app(app(compose,_0),_1),_2) -> app^#(_0,_2), app^#(app(app(compose,_0),_1),_2) -> app^#(_1,app(_0,_2)), app^#(app(reverse2,app(app(cons,_0),_1)),_2) -> app^#(app(reverse2,_1),app(app(cons,_0),_2)), app^#(app(reverse2,app(app(cons,_0),_1)),_2) -> app^#(app(cons,_0),_2)] TRS = {app(app(app(compose,_0),_1),_2) -> app(_1,app(_0,_2)), app(reverse,_0) -> app(app(reverse2,_0),nil), app(app(reverse2,nil),_0) -> _0, app(app(reverse2,app(app(cons,_0),_1)),_2) -> app(app(reverse2,_1),app(app(cons,_0),_2)), app(hd,app(app(cons,_0),_1)) -> _0, app(tl,app(app(cons,_0),_1)) -> _1, last -> app(app(compose,hd),reverse), init -> app(app(compose,reverse),app(app(compose,tl),reverse))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Successfully decomposed the DP problem into 1 smaller problem to solve! ## Round 3 [1 DP problem]: ## DP problem: Dependency pairs = [app^#(app(app(compose,_0),_1),_2) -> app^#(_0,_2), app^#(app(app(compose,_0),_1),_2) -> app^#(_1,app(_0,_2)), app^#(app(reverse2,app(app(cons,_0),_1)),_2) -> app^#(app(reverse2,_1),app(app(cons,_0),_2))] TRS = {app(app(app(compose,_0),_1),_2) -> app(_1,app(_0,_2)), app(reverse,_0) -> app(app(reverse2,_0),nil), app(app(reverse2,nil),_0) -> _0, app(app(reverse2,app(app(cons,_0),_1)),_2) -> app(app(reverse2,_1),app(app(cons,_0),_2)), app(hd,app(app(cons,_0),_1)) -> _0, app(tl,app(app(cons,_0),_1)) -> _1, last -> app(app(compose,hd),reverse), init -> app(app(compose,reverse),app(app(compose,tl),reverse))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Successfully decomposed the DP problem into 1 smaller problem to solve! ## Round 4 [1 DP problem]: ## DP problem: Dependency pairs = [app^#(app(app(compose,_0),_1),_2) -> app^#(_0,_2), app^#(app(app(compose,_0),_1),_2) -> app^#(_1,app(_0,_2))] TRS = {app(app(app(compose,_0),_1),_2) -> app(_1,app(_0,_2)), app(reverse,_0) -> app(app(reverse2,_0),nil), app(app(reverse2,nil),_0) -> _0, app(app(reverse2,app(app(cons,_0),_1)),_2) -> app(app(reverse2,_1),app(app(cons,_0),_2)), app(hd,app(app(cons,_0),_1)) -> _0, app(tl,app(app(cons,_0),_1)) -> _1, last -> app(app(compose,hd),reverse), init -> app(app(compose,reverse),app(app(compose,tl),reverse))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... The constraints are satisfied by the polynomials: {compose:[1], cons:[0], last:[1], init:[2], nil:[0], reverse:[0], hd:[0], app(_0,_1):[_0 + _1], reverse2:[0], tl:[0], app^#(_0,_1):[_0]} for all instantiations of the variables with values greater than or equal to mu = 0. This DP problem is finite. ## All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 0