/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 2] ap(ap(ap(g,f),_0),ap(s,_1)) -> ap(ap(ap(g,f),_0),ap(_0,0)) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {_0->s} and theta2 = {_1->0}. We have r|p = ap(ap(ap(g,f),_0),ap(_0,0)) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = ap(ap(ap(g,f),s),ap(s,_1)) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 1 initial DP problem to solve. ## First, we try to decompose this problem into smaller problems. ## Round 1 [1 DP problem]: ## DP problem: Dependency pairs = [ap^#(ap(ap(g,_0),_1),ap(s,_2)) -> ap^#(ap(ap(g,_0),_1),ap(ap(_0,_1),0)), ap^#(ap(ap(g,_0),_1),ap(s,_2)) -> ap^#(ap(g,_0),_1), ap^#(ap(ap(g,_0),_1),ap(s,_2)) -> ap^#(_0,_1)] TRS = {ap(f,_0) -> _0, ap(ap(ap(g,_0),_1),ap(s,_2)) -> ap(ap(ap(g,_0),_1),ap(ap(_0,_1),0))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... Failed! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## A DP problem could not be proved finite. ## Now, we try to prove that this problem is infinite. ## Trying to find a loop (forward=true, backward=false, max=-1) # max_depth=3, unfold_variables=false: # Iteration 0: no loop found, 3 unfolded rules generated. # Iteration 1: no loop found, 9 unfolded rules generated. # Iteration 2: success, found a loop, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = ap^#(ap(ap(g,_0),_1),ap(s,_2)) -> ap^#(ap(ap(g,_0),_1),ap(ap(_0,_1),0)) [trans] is in U_IR^0. D = ap^#(ap(ap(g,_0),_1),ap(s,_2)) -> ap^#(ap(g,_0),_1) is a dependency pair of IR. We build a composed triple from L0 and D. ==> L1 = [ap^#(ap(ap(g,_0),_1),ap(s,_2)) -> ap^#(ap(ap(g,_0),_1),ap(ap(_0,_1),0)), ap^#(ap(ap(g,_3),_4),ap(s,_5)) -> ap^#(ap(g,_3),_4)] [comp] is in U_IR^1. Let p1 = [1, 0]. We unfold the first rule of L1 forwards at position p1 with the rule ap(f,_0) -> _0. ==> L2 = [ap^#(ap(ap(g,f),_0),ap(s,_1)) -> ap^#(ap(ap(g,f),_0),ap(_0,0)), ap^#(ap(ap(g,_2),_3),ap(s,_4)) -> ap^#(ap(g,_2),_3)] [comp] is in U_IR^2. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 33