/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES ** BEGIN proof argument ** All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 3 initial DP problems to solve. ## First, we try to decompose these problems into smaller problems. ## Round 1 [3 DP problems]: ## DP problem: Dependency pairs = [sum^#(cons(_0,cons(_1,_2))) -> sum^#(cons(a(_0,_1,h),_2))] TRS = {app(nil,_0) -> _0, app(_0,nil) -> _0, app(cons(_0,_1),_2) -> cons(_0,app(_1,_2)), sum(cons(_0,nil)) -> cons(_0,nil), sum(cons(_0,cons(_1,_2))) -> sum(cons(a(_0,_1,h),_2)), a(h,h,_0) -> s(_0), a(_0,s(_1),h) -> a(_0,_1,s(h)), a(_0,s(_1),s(_2)) -> a(_0,_1,a(_0,s(_1),_2)), a(s(_0),h,_1) -> a(_0,_1,_1)} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {s:[0], sum:[0], a:[0, 1, 2], app:[0, 1], cons:[1], sum^#:[0]} and the precedence: s > [h], a > [s, h], cons > [sum, sum^#], app > [sum, cons, sum^#] This DP problem is finite. ## DP problem: Dependency pairs = [a^#(_0,s(_1),h) -> a^#(_0,_1,s(h)), a^#(_0,s(_1),s(_2)) -> a^#(_0,_1,a(_0,s(_1),_2)), a^#(_0,s(_1),s(_2)) -> a^#(_0,s(_1),_2), a^#(s(_0),h,_1) -> a^#(_0,_1,_1)] TRS = {app(nil,_0) -> _0, app(_0,nil) -> _0, app(cons(_0,_1),_2) -> cons(_0,app(_1,_2)), sum(cons(_0,nil)) -> cons(_0,nil), sum(cons(_0,cons(_1,_2))) -> sum(cons(a(_0,_1,h),_2)), a(h,h,_0) -> s(_0), a(_0,s(_1),h) -> a(_0,_1,s(h)), a(_0,s(_1),s(_2)) -> a(_0,_1,a(_0,s(_1),_2)), a(s(_0),h,_1) -> a(_0,_1,_1)} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... The constraints are satisfied by the lexicographic path order using the argument filtering: {s:[0], sum:[0], a:[0, 1, 2], app:[0, 1], cons:[1], a^#:[0, 1, 2]} and the precedence: s > [h], a > [s, h], a^# > [s, h, a], cons > [sum], app > [sum, cons] This DP problem is finite. ## DP problem: Dependency pairs = [app^#(cons(_0,_1),_2) -> app^#(_1,_2)] TRS = {app(nil,_0) -> _0, app(_0,nil) -> _0, app(cons(_0,_1),_2) -> cons(_0,app(_1,_2)), sum(cons(_0,nil)) -> cons(_0,nil), sum(cons(_0,cons(_1,_2))) -> sum(cons(a(_0,_1,h),_2)), a(h,h,_0) -> s(_0), a(_0,s(_1),h) -> a(_0,_1,s(h)), a(_0,s(_1),s(_2)) -> a(_0,_1,a(_0,s(_1),_2)), a(s(_0),h,_1) -> a(_0,_1,_1)} ## Trying with homeomorphic embeddings... Success! This DP problem is finite. ## All the DP problems were proved finite. As all the involved DP processors are sound, the TRS under analysis terminates. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 0