/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 2 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) Induction-Processor [SOUND, 36 ms] (27) AND (28) QDP (29) PisEmptyProof [EQUIVALENT, 0 ms] (30) YES (31) QTRS (32) QTRSRRRProof [EQUIVALENT, 19 ms] (33) QTRS (34) QTRSRRRProof [EQUIVALENT, 0 ms] (35) QTRS (36) RisEmptyProof [EQUIVALENT, 0 ms] (37) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) The TRS R 2 is le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The signature Sigma is {le_2, true, false} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) LE(s(x), s(y)) -> LE(x, y) QUOT(s(x), s(y)) -> QUOT(minus(s(x), s(y)), s(y)) QUOT(s(x), s(y)) -> MINUS(s(x), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 1 less node. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(s(x), s(y)), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(s(x), s(y)), s(y))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(s(x), s(y)), s(y)) The TRS R consists of the following rules: minus(s(x), s(y)) -> minus(x, y) minus(x, 0) -> x The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(s(x), s(y)), s(y)) The TRS R consists of the following rules: minus(s(x), s(y)) -> minus(x, y) minus(x, 0) -> x The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) Induction-Processor (SOUND) This DP could be deleted by the Induction-Processor: QUOT(s(x), s(y)) -> QUOT(minus(s(x), s(y)), s(y)) This order was computed: Polynomial interpretation [POLO]: POL(0) = 1 POL(QUOT(x_1, x_2)) = x_1 POL(minus(x_1, x_2)) = x_1 POL(s(x_1)) = 1 + x_1 At least one of these decreasing rules is always used after the deleted DP: minus(s(x'), s(y')) -> minus(x', y') The following formula is valid: x:sort[a0],y:sort[a0].minus'(s(x), s(y))=true The transformed set: minus'(s(x'), s(y')) -> true minus'(x'', 0) -> false minus'(0, s(v4)) -> false minus(s(x'), s(y')) -> minus(x', y') minus(x'', 0) -> x'' minus(0, s(v4)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true The proof given by the theorem prover: The following output was given by the internal theorem prover:proof of internal # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Partial correctness of the following Program [x, v5, v6, v7, x', y', x'', v4] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true minus'(s(x'), s(y')) -> true minus'(x'', 0) -> false minus'(0, s(v4)) -> false minus(s(x'), s(y')) -> minus(x', y') minus(x'', 0) -> x'' minus(0, s(v4)) -> 0 using the following formula: x:sort[a0],y:sort[a0].minus'(s(x), s(y))=true could be successfully shown: (0) Formula (1) Symbolic evaluation [EQUIVALENT, 0 ms] (2) YES ---------------------------------------- (0) Obligation: Formula: x:sort[a0],y:sort[a0].minus'(s(x), s(y))=true There are no hypotheses. ---------------------------------------- (1) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (2) YES ---------------------------------------- (27) Complex Obligation (AND) ---------------------------------------- (28) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(s(x), s(y)) -> minus(x, y) minus(x, 0) -> x The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (30) YES ---------------------------------------- (31) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus'(s(x'), s(y')) -> true minus'(x'', 0) -> false minus'(0, s(v4)) -> false minus(s(x'), s(y')) -> minus(x', y') minus(x'', 0) -> x'' minus(0, s(v4)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true Q is empty. ---------------------------------------- (32) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 2 POL(and(x_1, x_2)) = 1 + 2*x_1 + x_2 POL(equal_bool(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(equal_sort[a0](x_1, x_2)) = 2*x_1 + 2*x_2 POL(equal_sort[a13](x_1, x_2)) = 2*x_1 + 2*x_2 POL(false) = 2 POL(isa_false(x_1)) = 2 + 2*x_1 POL(isa_true(x_1)) = 1 + 2*x_1 POL(minus(x_1, x_2)) = 2*x_1 + 2*x_2 POL(minus'(x_1, x_2)) = 2 + x_1 + 2*x_2 POL(not(x_1)) = 2*x_1 POL(or(x_1, x_2)) = 1 + x_1 + x_2 POL(s(x_1)) = 2*x_1 POL(true) = 1 POL(witness_sort[a13]) = 2 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: minus'(s(x'), s(y')) -> true minus'(x'', 0) -> false minus'(0, s(v4)) -> false minus(x'', 0) -> x'' minus(0, s(v4)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true ---------------------------------------- (33) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(s(x'), s(y')) -> minus(x', y') not(true) -> false equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) Q is empty. ---------------------------------------- (34) QTRSRRRProof (EQUIVALENT) Used ordering: Knuth-Bendix order [KBO] with precedence:s_1 > equal_sort[a0]_2 > not_1 > false > true > minus_2 and weight map: true=1 false=2 s_1=0 not_1=1 minus_2=0 equal_sort[a0]_2=0 The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: minus(s(x'), s(y')) -> minus(x', y') not(true) -> false equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) ---------------------------------------- (35) Obligation: Q restricted rewrite system: R is empty. Q is empty. ---------------------------------------- (36) RisEmptyProof (EQUIVALENT) The TRS R is empty. Hence, termination is trivially proven. ---------------------------------------- (37) YES