/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 112 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 24 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 0 ms] (6) QTRS (7) RisEmptyProof [EQUIVALENT, 0 ms] (8) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A) = 2 POL(B) = 2 POL(C) = 2 POL(f(x_1, x_2)) = x_1 + 2*x_2 POL(f'(x_1, x_2)) = x_1 + 2*x_2 POL(f''(x_1)) = x_1 POL(foldB(x_1, x_2)) = x_1 + 2*x_2 POL(foldC(x_1, x_2)) = x_1 + 2*x_2 POL(g(x_1)) = x_1 POL(s(x_1)) = 2 + x_1 POL(triple(x_1, x_2, x_3)) = x_1 + 2*x_2 + 2*x_3 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b)) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(A) = 0 POL(B) = 2 POL(C) = 2 POL(f(x_1, x_2)) = x_1 + 2*x_2 POL(f'(x_1, x_2)) = x_1 + 2*x_2 POL(f''(x_1)) = 1 + 2*x_1 POL(foldB(x_1, x_2)) = 2*x_1 + 2*x_2 POL(foldC(x_1, x_2)) = x_1 + 2*x_2 POL(g(x_1)) = x_1 POL(s(x_1)) = 2 + x_1 POL(triple(x_1, x_2, x_3)) = 2 + 2*x_1 + 2*x_2 + x_3 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: g(B) -> A g(C) -> A f'(triple(a, b, c), C) -> triple(a, b, s(c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(A) -> A g(B) -> B g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) Q is empty. ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Knuth-Bendix order [KBO] with precedence:foldB_2 > f'_2 > foldC_2 > f_2 > 0 > s_1 > C > A > B > g_1 and weight map: A=1 B=2 C=1 0=1 g_1=2 s_1=5 foldB_2=0 f_2=3 foldC_2=0 f'_2=0 The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: g(A) -> A g(B) -> B g(C) -> B g(C) -> C foldB(t, 0) -> t foldB(t, s(n)) -> f(foldB(t, n), B) foldC(t, 0) -> t foldC(t, s(n)) -> f(foldC(t, n), C) f(t, x) -> f'(t, g(x)) ---------------------------------------- (6) Obligation: Q restricted rewrite system: R is empty. Q is empty. ---------------------------------------- (7) RisEmptyProof (EQUIVALENT) The TRS R is empty. Hence, termination is trivially proven. ---------------------------------------- (8) YES